Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structured Light for Optical Communication

Edited by (Emeritus Professor of Physics, University of York, UK), Edited by (Emeritus Professor, University of East Anglia, United Kingdom), Edited by (Center for Quantum Optics and Quantum Informatics, Riyadh, Saudi Arabia)
  • Formāts: PDF+DRM
  • Sērija : Nanophotonics
  • Izdošanas datums: 18-Jun-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128215111
  • Formāts - PDF+DRM
  • Cena: 223,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Nanophotonics
  • Izdošanas datums: 18-Jun-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128215111

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Structured Light for Optical Communication highlights principles and applications in the rapidly evolving field of structured light in wide-ranging contexts, from classical forms of communication to new frontiers of quantum communication. Besides the basic principles and applications, the book covers the background of structured light in its most common forms, as well as state-of-the-art developments. Structured light has been hailed as affording outstanding prospects for the realization of high bandwidth communication, enhanced tools for more highly secure cryptography, and exciting opportunities for providing a reliable platform for quantum computing.

This book is a valuable resource for graduate students and other active researchers, as well as others who may be interested in learning about this cutting-edge research field.

  • Broadly covers the use of structured light in communication applications
  • Highlights quantum and photonics principles, emerging and future applications
  • Assesses the major challenges of using structured light for communication applications
List of contributors
xi
Preface xiii
Chapter 1 Basics of quantum communication
1(36)
O. Alshehri
Z.-H. Li
M.D. Al-Amri
1.1 Introduction
2(3)
1.2 Optical polarization
5(1)
1.3 Dirac's notation
6(1)
1.4 Quantum bits (qubits)
7(1)
1.5 The Bloch sphere
8(1)
1.6 Quantum entanglement and nonlocality
9(2)
1.7 Measurement, decoherence, and irreversibility
11(2)
1.8 Quantum cloning
13(1)
1.9 Quantum communication with single photons
14(5)
1.9.1 Polarization encoding
15(1)
1.9.2 Orbital angular momentum (OAM) encoding
15(1)
1.9.3 Time-bin encoding
16(1)
1.9.4 Path encoding
17(2)
1.9.5 Frequency-bin encoding
19(1)
1.10 Protocols of quantum communications
19(8)
1.10.1 Quantum key distribution (QKD) protocols
20(2)
1.10.2 Quantum teleportation protocol
22(4)
1.10.3 Superdense coding protocol
26(1)
1.11 Ranges of quantum communication
27(4)
1.11.1 Long distance quantum communication
27(3)
1.11.2 Short distance quantum communications
30(1)
1.12 Conclusions
31(6)
Acknowledgments
32(1)
References
32(5)
Chapter 2 Structured light
37(40)
M. Babiker
V.E. Lembessis
Koray Koksal
J. Yuan
2.1 Introduction
38(2)
2.2 Optical angular momentum
40(1)
2.3 Helmholtz equation and paraxial regime
40(2)
2.3.1 Linearly polarized `unstructured' light
40(1)
2.3.2 Elliptically polarized
41(1)
2.4 Structured light
42(4)
2.4.1 Phase-structured light
43(1)
2.4.2 Laguerre-Gaussian (LG) light beams
44(2)
2.5 Bessel and Bessel-Gaussian vortex beams
46(1)
2.5.1 Bessel vortex beams
46(1)
2.5.2 Bessel-Gaussian vortex beams
47(1)
2.6 Non-paraxial LG beams
47(4)
2.6.1 Extracting the paraxial regime
49(2)
2.7 Paraxial beams with small waists
51(1)
2.8 Chirality and helicity
52(5)
2.8.1 Cycle-averaged fields
52(3)
2.8.2 Effects of the Gouy and curvature phases
55(2)
2.9 Multiple vortex beams
57(4)
2.9.1 Linearly polarized LG beams
57(1)
2.9.2 Axial shift
58(3)
2.10 No axial shift---polarization gradients
61(10)
2.10.1 Co-propagating LG beams
62(3)
2.10.2 Counter-propagating beams
65(2)
2.10.3 Bi-chromatic vortex beams
67(4)
2.11 Quantization of optical angular momentum
71(2)
2.11.1 Quantized SAM
72(1)
2.11.2 Orbital angular momentum
73(1)
2.12 Conclusions
73(4)
References
75(2)
Chapter 3 Quantum features of structured light
77(18)
David L. Andrews
3.1 Introduction
77(2)
3.2 Basis for the quantization of structured light
79(4)
3.3 Quantum issues in measurement and localization
83(3)
3.4 Quantized angular momentum: light and matter
86(2)
3.5 Entanglement
88(1)
3.6 Conclusion
89(6)
References
90(5)
Chapter 4 Poincare beams for optical communications
95(12)
Enrique J. Calvez
Behzad Khajavi
Brianna M. Holmes
4.1 Introduction
95(1)
4.2 Vortex Poincare Gaussian beams
96(4)
4.3 Poincare-Bessel beams
100(2)
4.4 Asymmetric and monstar patterns
102(2)
4.5 Experimental methods
104(1)
4.6 Discussion
104(3)
Acknowledgments
104(1)
References
105(2)
Chapter 5 Operators in paraxial quantum optics
107(32)
Gerard Nienhuis
5.1 Introduction
107(2)
5.2 Quantization and conserved quantities of Maxwell field
109(5)
5.2.1 Discretized plane-wave modes
109(1)
5.2.2 Continuum of plane-wave modes
110(1)
5.2.3 Operators for conserved quantities of radiation field
111(3)
5.3 Paraxial quantum fields
114(5)
5.3.1 Change of variables
114(1)
5.3.2 Paraxial wave equation
114(1)
5.3.3 Paraxial limit of quantum field
115(1)
5.3.4 Discrete transverse modes
116(2)
5.3.5 Algebra of continuum of bosonic operators
118(1)
5.4 Paraxial modes and harmonic oscillators
119(3)
5.4.1 Hermite--Gauss modes
120(1)
5.4.2 Correspondence between paraxial modes and harmonic-oscillator states
121(1)
5.4.3 Laguerre--Gauss modes
122(1)
5.5 Paraxial energy, momentum and angular momentum
122(2)
5.6 Operator description of Gaussian paraxial modes
124(6)
5.6.1 Operator description of Hermite--Gauss modes
124(2)
5.6.2 Operator description of Laguerre--Gauss modes
126(2)
5.6.3 Elliptical Gaussian modes
128(2)
5.7 Schwinger representation of Laguerre--Gauss modes
130(4)
5.7.1 The Lie algebra su(2)
130(2)
5.7.2 The tie algebra su(1, 1)
132(2)
5.8 Conclusions
134(5)
References
136(3)
Chapter 6 Quantum cryptography with structured photons
139(38)
Alicia Sit
Felix Hufhagel
Ebrahim Karimi
6.1 Introduction
139(4)
6.2 Generation and detection
143(6)
6.2.1 Polarization
143(2)
6.2.2 Holography
145(2)
6.2.3 Pancharatnam-Berry optical elements
147(2)
6.3 High-dimensional quantum information
149(10)
6.3.1 Optimal quantum cloning
149(3)
6.3.2 Protocols
152(3)
6.3.3 Quantum process tomography
155(4)
6.4 Quantum key distribution implementations
159(14)
6.4.1 Optical fiber
159(3)
6.4.2 Free-space
162(5)
6.4.3 Underwater
167(6)
6.5 Conclusion
173(4)
Acknowledgment
173(1)
References
173(4)
Chapter 7 Spin and orbital angular momentum coupling
177(28)
Lorenzo Marrucci
7.1 Introduction
177(4)
7.2 Paraxial spin-orbit coupling: q-plates, meta-surfaces and similar devices
181(6)
7.3 Non-paraxial spin-orbit coupling: spin Hall effect of light and optical fibers
187(6)
7.4 Applications to optical communication
193(7)
7.5 Conclusions
200(5)
References
200(5)
Chapter 8 Quantum communication with structured photons
205(32)
Robert Fickler
Shashi Prabhakar
8.1 Introduction
206(2)
8.2 Quantum protocols
208(7)
8.2.1 Information capacity, dense coding and noise resistance
208(1)
8.2.2 Quantum key distribution
209(1)
8.2.3 Quantum coin tossing
210(1)
8.2.4 Quantum secret sharing
211(1)
8.2.5 Layered quantum key distribution
212(3)
8.3 Experimental toolbox
215(4)
8.3.1 Generation and detection methods
215(2)
8.3.2 Modulation methods
217(2)
8.4 Quantum network
219(14)
8.4.1 Entanglement sources
219(4)
8.4.2 Quantum channels
223(5)
8.4.3 Quantum repeater
228(3)
8.4.4 Quantum interfaces
231(1)
8.4.5 Quantum router
231(2)
8.5 Conclusion
233(4)
Acknowledgments
233(1)
References
233(4)
Chapter 9 Optical angular momentum interaction with turbulent and scattering media
237(22)
Mingjian Chen
Martin Lavery
9.1 Atmospheric turbulence variations in real environments
238(3)
9.2 Turbulence-induced phase variations
241(3)
9.3 Turbulence's effect on structured beams
244(2)
9.4 Degradation of beams that carry OAM
246(8)
9.5 Scattering dynamics of beams that carry OAM
254(3)
9.6 Conclusions
257(2)
References
257(2)
Chapter 10 Causes and mitigation of modal crosstalk in OAM multiplexed optical communication links
259(32)
Alan E. Willner
Haoqian Song
Cong Liu
Runzhou Zhang Kai Pang Huibin Zhou
Nanzhe Hu
Hao Song
Xinzhou Su
Zhe Zhao
Moshe Tur
Hao Huang Cuodong Xie
Yongxiong Ren
10.1 Introduction and overview
260(3)
10.2 Causes for channel crosstalk in an OAM multiplexed link
263(3)
10.2.1 Atmospheric turbulence
263(1)
10.2.2 Misalignment
264(1)
10.2.3 Obstruction
265(1)
Summary
266(1)
10.3 Adaptive optics (AO) for crosstalk (XT) mitigation
266(9)
10.3.1 AO using wavefront sensor (WFS) and Gaussian probe beam
266(3)
10.3.2 AO using WFS and Gaussian probe beam in a quantum communication link
269(2)
10.3.3 AO using camera for beam intensity measurement
271(2)
10.3.4 Simultaneous demultiplexing and XT mitigation by using multi-plane light converter (MPLC)
273(1)
Summary
274(1)
10.4 Spatial modes manipulation for crosstalk mitigation
275(5)
10.4.1 Turbulence pre-compensation by OAM mode combination
275(2)
10.4.2 Simultaneous orthogonalizing and shaping of multiple LG beams
277(2)
10.4.3 Utilizing Bessel-Gaussian (BG) beams with non-zero OAM order
279(1)
Summary
280(1)
10.5 Digital signal processing for crosstalk mitigation
280(4)
10.5.1 MIMO equalization for crosstalk mitigation in laboratory
281(1)
10.5.2 MIMO equalization for crosstalk mitigation in the link through a flying UAV
282(2)
Summary
284(1)
10.6 Summary
284(7)
Acknowledgment
284(1)
References
284(7)
Index 291
Mohammad Al-Amri is Professor of Physics at the Center for Quantum Optics and Quantum Informatics, KACST, Riyadh, Saudi Arabia. His research focuses in the areas of quantum optics and quantum informatics. Mohamed Babiker is Emeritus Professor of Physics at the University of York, UK. His research focuses on quantum optics theory, optical and matter vortices, and quantum field theory. David L. Andrews is Emeritus Professor of Chemical Physics at the University of East Anglia, UK. His research, covering a wide range of topics in spectroscopy, optics, photonics, and quantum science, has produced over four hundred scientific papers, nearly all of them applying the tools of molecular quantum electrodynamics. As an author and editor, he has already published more than twenty books, including Lasers in Chemistry, Resonance Energy Transfer, Structured Light and its Applications, Optical Nanomanipulation, and an Introduction to Photon Science and Technology. David has organized more than a hundred international conferences, both in Europe and North America, including several now well-established series: Complex Light and Optical Forces at Photonics West, Nanophotonics at Photonics Europe, and several iterations of the International Conference on Optical Angular Momentum. He is an awardee of the RSC Horizon Prize in 2022 and the IOP Thomas Young Award in 2023. David is a Fellow of SPIE the international society for optics and photonics; also Optica; the Institute of Physics; and the Royal Society of Chemistry. He served as elected President of SPIE in 2021.