Atjaunināt sīkdatņu piekrišanu

Student Friendly Quantum Field Theory 2nd edition [Mīkstie vāki]

4.31/5 (40 ratings by Goodreads)
  • Formāts: Paperback / softback, 556 pages, height x width x depth: 280x216x28 mm, weight: 1273 g, black & white illustrations
  • Izdošanas datums: 04-Dec-2013
  • Izdevniecība: Sandtrove Press
  • ISBN-10: 0984513957
  • ISBN-13: 9780984513956
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 53,42 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 556 pages, height x width x depth: 280x216x28 mm, weight: 1273 g, black & white illustrations
  • Izdošanas datums: 04-Dec-2013
  • Izdevniecība: Sandtrove Press
  • ISBN-10: 0984513957
  • ISBN-13: 9780984513956
Citas grāmatas par šo tēmu:
Table of Wholeness Charts
ix
Preface to Second Edition x
Acknowledgements for Second Edition x
Preface xi
Prerequisites xv
Acknowledgements xv
Preparation
1 Bird's Eye View
1(10)
1.0 Purpose of the
Chapter
1(1)
1.1 This Book's Approach to QFT
1(1)
1.2 Why Quantum Field Theory?
1(1)
1.3 How Quantum Field Theory?
1(2)
1.4 From Whence Creation and Destruction Operators?
3(1)
1.5 Overview: The Structure of Physics and QFT's Place Therein
3(2)
1.6 Comparison of Three Quantum Theories
5(3)
1.7 Major Components of QFT
8(1)
1.8 Points to Keep in Mind
8(1)
1.9 Big Picture of Our Goal
8(1)
1.10 Summary of the
Chapter
9(1)
1.11 Suggestions?
9(1)
1.12 Problems
9(2)
2 Foundations
11(28)
2.0
Chapter Overview
11(1)
2.1 Natural Units and Dimensions
11(4)
2.2 Notation
15(1)
2.3 Classical vs Quantum Plane Waves
16(1)
2.4 Review of Variational Methods
17(2)
2.5 Classical Mechanics: An Overview
19(6)
2.6 Schrodinger vs Heisenberg Pictures
25(4)
2.7 Quantum Theory: An Overview
29(2)
2.8
Chapter Summary
31(1)
2.9 Appendix: Understanding Contravariant and Covariant Components
32(4)
2.10 Problems
36(3)
Part One Free Fields
39(142)
3 Scalars: Spin 0 Fields
40(44)
3.0 Preliminaries
40(1)
3.1 Relativistic Quantum Mechanics: A History Lesson
41(6)
3.2 The Klein-Gordon Equation in Quantum Field Theory
47(4)
3.3 Commutation Relations: The Crux of QFT
51(2)
3.4 The Hamiltonian in QFT
53(4)
3.5 Expectation Values and the Hamiltonian
57(1)
3.6 Creation and Destruction Operators
58(3)
3.7 Probability, Four-Currents, and Charge Density
61(2)
3.8 More on Observables
63(2)
3.9 Real Fields
65(1)
3.10 Characteristics of Klein-Gordon States
65(1)
3.11 Odds and Ends
66(3)
3.12 Harmonic Oscillators and QFT
69(1)
3.13 The Scalar Feynman Propagator
70(8)
3.14
Chapter Summary
78(1)
3.15 Appendix A: Klein-Gordon Equation from H.P. Equation of Motion
79(1)
3.16 Appendix B: Vacuum Quanta and Harmonic Oscillators
80(1)
3.17 Appendix C: Propagator Derivation Step 4 for Δ
81(1)
3.18 Appendix D: Enlarging the Integration Path of Fig. 3--6
81(1)
3.19 Problems
82(2)
4 Spinors: Spin 1/2 Fields
84(50)
4.0 Preliminaries
84(1)
4.1 Relativistic Quantum Mechanics for Spinors
85(18)
4.2 The Dirac Equation in Quantum Field Theory
103(1)
4.3 Anti-commutation Relations for Dirac Fields
104(1)
4.4 The Dirac Hamiltonian in QFT
105(4)
4.5 Expectation Values and the Dirac Hamiltonian
109(1)
4.6 Creation and Destruction Operators
109(2)
4.7 QFT Spinor Charge Operator and Four-Current
111(2)
4.8 Dirac Three Momentum Operator
113(1)
4.9 Dirac Spin Operator in QFT
113(2)
4.10 QFT Helicity Operator
115(1)
4.11 Odds and Ends
115(2)
4.12 The Spinor Feynman Propagator
117(5)
4.13 Appendix A. Dirac Matrices and ur, vs Relations
122(2)
4.14 Appendix B. Relativistic Spin: Getting to the Real Bottom of It All
124(7)
4.15 Problems
131(3)
5 Vectors: Spin 1 Fields
134(28)
5.0 Preliminaries
134(1)
5.1 Review of Classical Electromagnetism
135(9)
5.2 Relativistic Quantum Mechanics for Photons
144(3)
5.3 The Maxwell Equation in Quantum Field Theory
147(1)
5.4 Commutation Relations for Photon Fields
148(1)
5.5 The QFT Hamiltonian for Photons
149(1)
5.6 Other Photon Operators in QFT
149(1)
5.7 The Photon Propagator
150(1)
5.8 More on Quantization and Polarization
150(4)
5.9 Photon Spin Issues Similar to Spinors
154(1)
5.10 Where to Next?
155(1)
5.11 Summary Chart
155(5)
5.12 Appendix: Completeness Relations
160(1)
5.13 Problems
161(1)
6 Symmetry, Invariance, and Conservation for Free Fields
162(19)
6.0 Preliminaries
162(1)
6.1 Introduction to Symmetry
163(4)
6.2 Symmetry in Classical Mechanics
167(4)
6.3 Transformations in Quantum Field Theory
171(1)
6.4 Lorentz Symmetry of the Lagrangian Density
171(1)
6.5 Other Symmetries of the Lagrangian Density: Noether's Theorem
172(5)
6.6 Symmetry, Gauges, and Gauge Theory
177(1)
6.7
Chapter Summary
178
6.8 Problems
119(62)
Part Two Interacting Fields
181(122)
7 Interactions: The Underlying Theory
182(32)
7.0 Preliminaries
182(1)
7.1 Interactions in Relativistic Quantum Mechanics
183(3)
7.2 Interactions in Quantum Field Theory
186(1)
7.3 The Interaction Picture
187(7)
7.4 The S Operator and the S Matrix
194(3)
7.5 Finding the S Operator
197(3)
7.6 Expanding Soper
200(1)
7.7 Wick's Theorem Applied to Dyson Expansion
201(3)
7.8 Justifying Wick's Theorem
204(5)
7.9 Comment on Normal Ordering of the Hamiltonian Density
209(1)
7.10
Chapter Summary
210(1)
7.11 Appendix A: Justifying Wick's Theorem via Induction
210(2)
7.12 Appendix B: Operators in Exponentials and Time Ordering
212(1)
7.13 Problems
213(1)
8 QED: Quantum Field Interaction Theory Applied to Electromagnetism
214(40)
8.0 Preliminaries
214(1)
8.1 Dyson-Wick's Expansion for QED Hamiltonian Density
215(2)
8.2 S(0) Physically
217(1)
8.3 S(1) Physically
217(3)
8.4 S(2) Physically
220(15)
8.5 The Shortcut Method: Feynman Rules
235(2)
8.6 Points to Be Aware of
237(4)
8.7 Including Other Charged Leptons in QED
241(1)
8.8 When to Add Amplitudes and When to Add Probabilities
242(1)
8.9 Wave Packets and Complex Sinusoids
243(1)
8.10 Looking Closer at Attraction and Repulsion
243(3)
8.11 The Degree of the Propagator Contribution to the Transition Amplitude
246(1)
8.12 Summary of Where We Have Been: Chaps. 7 and 8
247(5)
8.13 Problems
252(2)
9 Higher Order Corrections
254(13)
9.0 Background
254(1)
9.1 Higher Order Correction Terms
255(10)
9.2 Problems
265(2)
10 The Vacuum Revisited
267(19)
10.0 Background
267(1)
10.1 Vacuum Fluctuations: The Theory
267(3)
10.2 Vacuum Fluctuations and Experiment
270(2)
10.3 Further Considerations of Uncertainty Principle
272(2)
10.4 Wave Packets
274(3)
10.5 Further Considerations
277(1)
10.6
Chapter Summary
277(1)
10.7 Addenda
277(2)
10.8 Appendix A: Theoretical Value for Vacuum Energy Density
279(1)
10.9 Appendix B: Symmetry Breaking, Mass Terms, and Vacuum Pairs
280(1)
10.10 Appendix C: Comparison of QFT for Discrete vs Continuous Solutions
281(3)
10.11 Appendix D: Free Fields and "Pair Popping" Re-visited
284(1)
10.12 Appendix E: Considerations for Finite Volume Interactions
285(1)
10.13 Problem
285(1)
11 Symmetry, Invariance, and Conservation for Interacting Fields
286(17)
11.0 Preliminaries
286(1)
11.1 A Helpful Modification to the Lagrangian
287(2)
11.2 External Symmetry for Interacting Fields
289(1)
11.3 Internal Symmetry and Conservation for Interactions
290(2)
11.4 Global vs Local Transformations and Symmetries
292(1)
11.5 Local Symmetry and Interaction Theory
293(4)
11.6 Minimal Substitution
297(1)
11.7
Chapter Summary
297(1)
11.8 Appendix: Showing [ Q,S] = 0
298(2)
11.9 Problems
300(3)
Part Three Renormalization -- Taming Those Notorious Infinities
303(98)
12 Overview of Renormalization
304(18)
12.0 Preliminaries
304(1)
12.1 Whence the Term "Renormalization"?
305(1)
12.2 A Brief Mathematical Interlude: Regularization
305(1)
12.3 A Renormalization Example: Bhabha Scattering
306(4)
12.4 Higher Order Contributions in Bhabha Scattering
310(2)
12.5 Same Result for Any Interaction
312(1)
12.6 We Also Need to Renormalize Mass
312(1)
12.7 The Total Renormalization Scheme
313(1)
12.8 Express e (k) as e (p) or Other Symbol for Energy
313(4)
12.9 Things You May Run Into
317(1)
12.10 Adiabatic Hypothesis
318(1)
12.11 Regularization Revisited
319(1)
12.12 Where We Stand
319(1)
12.13
Chapter Summary
320(1)
12.14 Problems
321(1)
13 Renormalization Toolkit
322(17)
13.0 Preliminaries
322(1)
13.1 The Three Key Integrals
322(3)
13.2 Relations We'll Need
325(3)
13.3 Ward Identities, Renormalization, and Gauge Invariance
328(2)
13.4 Changes in the Theory with m0 Instead of m
330(1)
13.5 Showing the B in Fermion Loop Equals the L in Vertex Correction
331(1)
13.6 Re-expressing 2nd Order Corrected Propagators, Vertex, and External Lines
332(4)
13.7
Chapter Summary
336(1)
13.8 Appendix: Finding Ward Identities for Compton Scattering
337(1)
13.9 Problems
337(2)
14 Renormalization: Putting It All Together
339(35)
14.0 Preliminaries
339(1)
14.1 Renormalization Example: Compton's Scattering
340(2)
14.2 Renormalizing 2nd Order Divergent Amplitudes
342(9)
14.3 The Total Amplitude to 2nd Order
351(1)
14.4 Renormalization to Higher Orders: Our Approach
351(1)
14.5 Higher Order Renormalization Example: Compton's Scattering
352(2)
14.6 Renormalizing nth Order Divergent Amplitudes
354(10)
14.7 The Total Amplitude to nth Order
364(1)
14.8 Renormalization to All Orders
364(1)
14.9
Chapter Summary
365(7)
14.10 Appendix: Showing kμkv Bnth Term Drops Out
372(1)
14.11 Problems
373(1)
15 Regularization
374(27)
15.0 Preliminaries
374(1)
15.1 Relations We'll Need
375(4)
15.2 Finding Photon Self Energy Factor Using the Cut-Off Method
379(5)
15.3 Pauli-Villars Regularization
384(1)
15.4 Dimensional Regularization
385(3)
15.5 Comparing Various Regularization Approaches
388(1)
15.6 Finding Photon Self Energy Factor Using Dimensional Regularization
388(5)
15.7 Finding the Vertex Correction Factor Using Dimensional Regularization
393(4)
15.8 Finding Fermion Self Energy Factor Using Dimensional Regularization
397(1)
15.9
Chapter Summary
397(2)
15.10 Appendix: Additional Notes on Integrals
399(1)
15.11 Problems
400(1)
Part Four Application to Experiment
401(120)
16 Postdiction of Historical Experimental Results
402(30)
16.0 Preliminaries
402(1)
16.1 Coulomb Potential in RQM
402(2)
16.2 Coulomb Potential in QFT
404(6)
16.3 Other Potentials and Boson Types
410(1)
16.4 Anomalous Magnetic Moment
411(16)
16.5 The Lamb Shift
427(1)
16.6 A Note on QED Successes Over RQM
427(1)
16.7
Chapter Summary
428(2)
16.8 Appendix: Deriving Feynman Rules for Static, External (Potential) Field
430(1)
16.9 Problems
431(1)
17 Scattering
432(56)
17.0 Preliminaries
432(1)
17.1 The Cross Section
432(13)
17.2 Review of Interaction Conservation Laws
445(4)
17.3 Another Look at Macroscopic Charged Particles Interacting
449(3)
17.4 Scattering in QFT: An In Depth Look
452(11)
17.5 Scattering in QFT: Some Examples
463(16)
17.6 Bremsstrahlung and Infra-red Divergences
479(3)
17.7 Closure
482(1)
17.8
Chapter Summary
482(3)
17.9 Problems
485(3)
Addenda
487(1)
18 Path Integrals in Quantum Theories
488(22)
18.0 Preliminaries
488(1)
18.1 Background Math
488(1)
18.2 Defining Functional Integral
489(1)
18.3 The Transition Amplitude
490(2)
18.4 Expressing the Wave Function Peak in Terms of the Lagrangian
492(1)
18.5 Feynman's Path Integral Approach: The Central Idea
493(1)
18.6 Superimposing a Finite Number of Paths
494(3)
18.7 Summary of Approaches
497(1)
18.8 Finite Sums to Functional Integrals
498(4)
18.9 An Example: Free Particle
502(4)
18.10 QFT via Path Integrals
506(3)
18.11
Chapter Summary
509(1)
18.12 Appendix
509(1)
18.13 Problem
509(1)
19 Looking Backward and Looking Forward: Book Summary and What's Next
510(11)
19.0 Preliminaries
510(1)
19.1 Book Summary
511(8)
19.2 What's Next
519(2)
Index 521