Atjaunināt sīkdatņu piekrišanu

E-grāmata: Substations

Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : CIGRE Green Books
  • Izdošanas datums: 21-Jul-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319495743
  • Formāts - EPUB+DRM
  • Cena: 832,76 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : CIGRE Green Books
  • Izdošanas datums: 21-Jul-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319495743

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This handbook offers the whole knowledge of high voltage substations from their design and construction to the maintenance and the ongoing management, the entire asset life-cycle. The content of the book covers a range of substation topologies: Air-Insulated, Gas-Insulated and Mixed Technology Switchgear Substations together with the essential secondary systems. Additionally specialized substations such as ultra high voltage (UHV), offshore substations for wind power plants and the use of gas insulated lines are included.

The book includes topics, providing information for increased reliability and availability, asset management, environmental management aspects, and the adoption of appropriate technological advances in equipment and systems in substations.

The book was written by more than 30 experts from around the world and assembled through the Cigré study committee on Substations. This guarantees that the book contains information that is based on the global exchange and dissemination of unbiased information for technical and non-technical audiences.

Although there are other works containing references to Substations, this book is designed to provide a complete overview of the topic in one book, providing a valuable reference for anyone interested in the topic. 

Substations: Volume 1
1 Introduction
1(564)
John Finn
Adriaan Zomers
1.1 Purpose
1(1)
1.2 Substations
2(1)
1.3 Structure of the Book
2(2)
1.4 How to Use the Book
4(1)
Part A: Planning and Concepts
5(136)
John Finn
2 Introduction to Substation Planning and Concepts
7(1)
John Finn
2.1 Introduction
7(1)
2.2 System Requirements
8(1)
2.3 Site Location
10(1)
3 Type of Switchgear to Be Used
11(1)
Colm Twomey
3.1 Types of Switchgear Available
11(1)
3.1.1 Air-Insulated Switchgear (AIS)
12(1)
3.1.2 Gas-Insulated Switchgear (GIS)
12(1)
3.1.3 Mixed-Technology Switchgear (MTS)
12(1)
3.2 Choosing the Type to be Applied
12(1)
3.2.1 Reasons for Using AIS
13(1)
3.2.2 Reasons for Using GIS
13(1)
3.2.3 Reasons for Using MTS
13(1)
3.3 Conclusion
13(3)
4 Selecting Circuit Arrangements: Requirements and Reliability
y15
Gerd Lingner
4.1 Main Requirements
16(1)
4.1.1 Further Requirements and Implications
17(1)
4.2 Reliability
18(1)
4.3 Selecting Circuit Arrangements
19(1)
4.3.1 Description of Assessment Criteria
20(1)
4.3.2 Service Security
20(1)
4.3.3 Availability During Maintenance
21(1)
4.3.4 Operational Flexibility of a Substation
23(1)
4.4 Substation Configuration
24(1)
4.4.1 Substation Connecting to a Power Station
25(1)
4.5 Interconnection Substation
25(1)
4.6 Step-Up/Step-Down Substations
26(1)
4.7 Circuit Arrangements
29(1)
4.7.1 Single Busbar Arrangements
29(1)
4.7.2 Multiple Busbar Arrangements
32(1)
4.7.3 Ring Bus and Mesh Substation
36(1)
4.8 Selection Process
37(1)
References
39(2)
5 Effect of Safety Regulations and Safe Working Practices on Substation Design
41(1)
John Finn
5.1 Introduction
42(1)
5.2 Segregation of Live Conductors and Bare Live Equipment
42(1)
5.2.1 Techniques for Segregation
43(1)
5.2.2 Choice of Technique as a Function of the Voltage Level
45(1)
5.3 Clearances
45(1)
5.3.1 Definition
47(1)
5.3.2 Calculation of the Basic Value
47(1)
5.3.3 Determination of the Safety Zone
47(1)
5.3.4 Variations
53(1)
5.4 Earthing
54(1)
5.4.1 General Earth Mat or Grid
55(1)
5.4.2 Safety Earths
56(2)
5.5 Operation of High-Voltage Switchgear
58(1)
5.5.1 Types of Control
58(1)
5.5.2 Locking Off Switches
60(1)
5.5.3 Auxiliary Operating Supplies
60(1)
5.5.4 Current and Voltage Instrument Circuits
61(1)
5.6 Protection Against Fire
61(1)
5.6.1 Limitation of the Damage Zone
61(1)
5.6.2 Extinguishing of the Fire
63(1)
5.7 Fences
64(1)
5.7.1 External Fences
64(1)
5.7.2 Internal Fences
65(1)
References
65(2)
6 Incorporating New Functionalities Into the Substation
67(1)
John Finn
6.1 Introduction
68(1)
6.2 General Observations on Substation Design
69(1)
6.2.1 System Impact on Substation Design
69(1)
6.2.2 The Impact on the Substation Single-Line Diagram
71(1)
6.2.3 Impact on the Substation Bay
72(2)
6.3 Impact of Technology on Substation Design
74(1)
6.3.1 Mixed Technology Switchgear
75(1)
6.3.2 Compact and Integrated AIS Switchgear
75(1)
6.3.3 Dispersed Generation
76(1)
6.3.4 Reactive Compensation
77(1)
6.3.5 Nonconventional Instrument Transformers
78(1)
6.3.6 Power Flow Control Devices
79(1)
6.3.7 Custom Power Technology
80(1)
6.3.8 Fault Current Limiters
80(1)
6.3.9 HVDC
81(1)
6.3.10 Protection
81(1)
6.3.11 Gas-Insulated Lines, Transformers, and Superconducting Cables
82(1)
6.3.12 Monitoring and Diagnostic Equipment
83(1)
6.4 Example of Detail for Line-Commutated Converter HVDC
83(1)
6.5 Mobile Substations
91(1)
6.5.1 Introduction
91(1)
6.5.2 Standards
95(1)
6.5.3 Typical Transport Restrictions Associated with Mobile Substations
96(1)
6.5.4 Site Preparations
97(1)
6.5.5 Design Guidelines for Mobile Substations
97(4)
7 Substation Specification and Evaluation
101(1)
John Finn
7.1 General Introduction
101(1)
7.2 Conventional Specifications
102(1)
7.2.1 Location and Spatial Constraints
102(1)
7.2.2 Effects of Environment on Substation
102(1)
7.2.3 Circuit Definitions, Terminal Points, and Physical Boundaries
103(1)
7.2.4 Basic Information for Civil Works
103(1)
7.2.5 Basic System Parameters (Repeat for Each Different Voltage in the Substation)
104(1)
7.2.6 The Required Switching Configuration
104(1)
7.2.7 Secondary System Requirements
104(1)
7.2.8 Standards and Regulations
106(1)
7.2.9 Health, Safety, and Environment
106(1)
7.3 Evaluation of Substation Concepts
107(1)
7.3.1 The Life Cycle of a Substation
107(1)
7.3.2 Method of Substation Evaluation
107(6)
7.4 Functional Specifications
113(2)
8 Type of Contract for Substations (In House or Turnkey)
115(1)
John Finn
8.1 Introduction
116(1)
8.2 Advantages of Turnkey
116(1)
8.2.1 Simplification
116(1)
8.2.2 Variety of Options
116(1)
8.2.3 Implementation of New Technologies
117(1)
8.2.4 Better Price Certainty
117(1)
8.2.5 Time Schedule Certainty
117(1)
8.2.6 Reduced Asset Owner's Resources
117(1)
8.3 Disadvantages of Turnkey
118(1)
8.3.1 Loss of Control
118(1)
8.3.2 Requirement for Detailed Up-Front Documentation
118(1)
8.3.3 More Complex Evaluation
118(1)
8.3.4 Limited Number of Bids
118(1)
8.3.5 Risk of Poor Construction Quality
118(1)
8.3.6 Risk of Solution Provider Insolvency
119(1)
8.3.7 Risk of Inferior Quality Equipment
119(1)
8.3.8 Higher Cost
119(1)
8.3.9 Loss of Engineering Expertise Within Asset Owner
119(1)
8.4 Transition from In-House Projects to Turnkey Projects
119(1)
8.4.1 The Summation of Two Experiences
120(1)
8.4.2 Sharing for Success
120(1)
8.5 Key Actions to Minimize the Disadvantages of Turnkey Projects
121(1)
8.5.1 Organizational Aspects
121(1)
8.5.2 Establish a Basic Framework for the Execution of the Project
121(2)
9 Innovation and Standardization of Substation Equipment
123(1)
Colm Twomey
9.1 Introduction
123(1)
9.2 Definitions
124(1)
9.2.1 Standardization
124(1)
9.2.2 Innovation
125(2)
9.3 Standardization Versus Innovation
127(1)
9.4 Guidelines for Controlled Introduction of Innovation
128(1)
9.4.1 Future Development Structure
129(1)
9.4.2 Future Development Strategy
132(1)
9.4.3 Future Development Road Maps (Implementation Plan)
133(1)
9.4.4 Future Development Projects (Execution Stage)
135(1)
9.5 Integrating Innovative Solutions into the New Generation of Standards
136(1)
9.5.1 Introduction
136(1)
9.5.2 Review of Initial Pilot Project
137(1)
9.5.3 Scoping
138(1)
9.5.4 Implementation Process and Issues
138(1)
9.5.5 Rollout
139(1)
9.5.6 Review Process
139(1)
9.6 Summary
140(1)
Part B: Air-Insulated Substations
141(218)
Koji Kawakita
10 Introduction to Air-Insulated Substations
143(1)
Koji Kawakita
10.1 Site Location
145(1)
10.2 Site Layout
145(1)
10.3 Conceptual Design
146(1)
10.4 Project Management Plan
147(2)
11 Basic Design and Analysis of Air-Insulated Substations
149(1)
Co1m Twomey
Hugh Cunningham
Fabio Nepomuceno Fraga
Antonio Varejao de Godoy
Koji Kawakita
11.1 General
151(1)
11.2 Substation Layout
151(1)
11.2.1 First Step: Busbar Phase Disposition
152(1)
11.2.2 Second Step: Selection of Busbar Conductors
154(1)
11.2.3 Third Step: The Disposition of the High-Voltage Equipment in Each Standard Type of Circuit
156(1)
11.2.4 Fourth Step: The Type of Connection Between the Busbar and the Individual Circuit
157(9)
11.3 Electrical Clearances
166(1)
11.4 Insulation Coordination
169(1)
11.4.1 Protection of Substation Against Traveling Waves on Incoming Lines
171(1)
11.4.2 Impact of Traveling Waves on a Substation
172(1)
11.4.3 Protection
173(1)
11.5 Bus and Conductor
174(1)
11.5.1 Current Ratings
174(1)
11.5.2 Electrical Clearances
175(1)
11.5.3 Mechanical Forces
175(5)
11.6 Structures
180(1)
11.6.1 Concrete
181(1)
11.6.2 Steel
181(1)
11.6.3 Aluminum
182(1)
11.6.4 Wood
182(1)
11.7 Earthing (Grounding) and Lightning Protection
183(1)
11.7.1 Functions of a Substation Earth Grid
183(1)
11.7.2 Earth Grid Resistance Value
185(1)
11.7.3 Soil Resistivity Measurements
187(1)
11.7.4 Design Touch and Step Voltage Limits
187(1)
11.7.5 Transferred Voltages and Hot Zones
188(1)
11.7.6 Earthing of GIS
191(1)
11.7.7 Control of Electromagnetic Interference
192(1)
11.7.8 Earth Grid
192(1)
11.7.9 Design Earth Fault Current
194(1)
11.7.10 Earth Grid Conductor
195(1)
11.7.11 Exceptional Cases
196(1)
11.7.12 Verification of Earthing System Model
199(1)
11.7.13 Protection Against Direct Lightning Strokes
199(1)
11.7.14 GIS
200(1)
11.8 Contamination (Salt and Dust Pollution, Creepage Distance)
201(1)
11.9 Audible Noise
205(1)
11.9.1 Introduction
205(1)
11.9.2 Characteristics of Transformer Noise
205(1)
11.9.3 Propagation of Sound
206(1)
11.9.4 Noise Level Limits
206(1)
11.9.5 Noise Level Measurement
207(1)
11.9.6 Calculation of Noise Levels
208(1)
11.9.7 Methods of Substation Noise Control
208(1)
11.9.8 Transformer Noise Control Measures
210(1)
11.9.9 Other Noise Sources and Control Measures
212(1)
11.10 Fire Protection
213(1)
11.10.1 Fire Protection Systems
214(1)
11.10.2 Transformers
217(1)
11.10.3 Cables
219(1)
11.10.4 Control, Relay, and Cable Rooms
219(1)
11.10.5 Other Measures in the Substations
220(1)
11.10.6 Conclusions
221(1)
11.11 Seismic (CIGRE 1992)
221(1)
11.11.1 Seismic Design Procedures
222(1)
11.11.2 Practical Means to Enhance the Seismic Performance
224(1)
11.11.3 Conclusion
228(1)
11.12 Foundations, Buildings, Cable Trenches, Oil Containments, Etc.
229(1)
11.12.1 Foundations
229(1)
11.12.2 Buildings
231(1)
11.12.3 Cable Trenches
233(1)
11.12.4 Oil Containment
234(4)
11.13 Fences, Gates, Security, and Animal Deterrents
238(1)
11.13.1 Fencing
238(1)
11.13.2 Gates
239(1)
11.13.3 Substation Security
242(1)
11.13.4 Animal Deterrents
242(2)
References
244(3)
12 Specification and Selection of Main Components for Air-Insulated Substations
247(1)
John Nixon
Gerd Lingner
Eugene Bergin
12.1 General
249(1)
12.2 Circuit Breakers
259(1)
12.3 Disconnectors, Earthing or Grounding Switches, and Earthing or Grounding Poles
264(1)
12.4 Surge Arresters (or Lightning Arresters)
267(1)
12.5 Instrument Transformers
279(1)
12.6 High-Voltage Conductors and Connectors
285(1)
12.6.1 Purpose
285(1)
12.6.2 Conductor and Connector Material
286(1)
12.6.3 Selection of Conductors, Singular or Bundled
d286
12.6.4 Variation Caused by Temperature and Ice
287(1)
12.6.5 Movement Caused by Short-Circuit Forces and Wind
287(1)
12.6.6 Vibration
287(1)
12.6.7 Connector Types, E.g., Welded, Bolted, and Compression
289(1)
12.6.8 Fixed and Thermal Expansion Connectors
289(1)
12.6.9 Corona
289(1)
12.6.10 Jointing Methodology
291(1)
12.6.11 Joint Testing
291(1)
12.7 Solid-Core and Hollow Insulators
292(1)
12.7.1 Purpose of Insulators
292(1)
12.7.2 Insulator Material and Types
295(1)
12.7.3 Resistive Glaze
299(1)
12.7.4 Strength Selection Due to Static and Dynamic Forces
299(1)
12.7.5 Earthquake Ground Acceleration
301(1)
12.7.6 Bushings
301(1)
12.8 High-Voltage Cables
302(1)
12.8.1 Single-Core or Three-Core
303(1)
12.8.2 Cable Types
303(1)
12.8.3 Conductor
303(1)
12.8.4 Cable Insulation Materials
304(1)
12.8.5 Sheathing Material
308(1)
12.8.6 Outer Serving
308(1)
12.8.7 Bonding Design
309(1)
12.8.8 Current Ratings
309(1)
12.8.9 Cable Accessories
310(1)
12.8.10 Laying Arrangements
310(1)
12.8.11 Mechanical Considerations
311(1)
12.8.12 Jointing
311(1)
12.8.13 Testing
312(1)
12.8.14 Maintenance
312(1)
12.8.15 References
312(1)
12.9 Earthing or Grounding Grid
313(1)
12.9.1 General
313(1)
12.9.2 Materials Used in the Earthing or Grounding System
313(1)
12.9.3 Different Earth Rod Types
313(1)
12.9.4 Soil-Conditioning Agents
314(2)
12.10 Power Transformers and Compensation Equipment
316(1)
12.10.1 Impedance and Regulation
316(1)
12.10.2 Cooling Arrangements
317(1)
12.10.3 Winding Arrangements and Vector Groups
317(1)
12.10.4 Typical Transformer Arrangements
318(1)
12.10.5 Tertiary Winding Voltage and Rating
318(1)
12.10.6 Insulation Media
320(1)
12.10.7 Variation of Voltage
321(1)
12.10.8 Losses
321(1)
12.10.9 Noise
322(1)
12.10.10 Terminal Arrangements
322(1)
12.10.11 FACTS Devices
322(1)
12.10.12 Reactors
323(1)
12.10.13 Filters (Harmonic Filtering)
324(1)
12.10.14 Capacitors (Capacitor Banks)
324(1)
12.10.15 Static Var Compensator
326(1)
12.10.16 Voltage Source Converter Devices, E.g., STATCOMS
326(1)
12.11 Miscellaneous Equipment
327(1)
12.11.1 Purpose of Miscellaneous Equipment
327(1)
12.11.2 Line or Wave Traps
327(1)
12.11.3 Neutral Earthing or Grounding Resistors
328(1)
12.11.4 SF6 Gas
329(1)
12.11.5 SF6 Gas Analysis and Processing Equipment
330(2)
References
332(1)
13 Construction of Air-Insulated Substations
333(1)
Akira Okada
13.1 Construction Method
334(1)
13.2 Site Logistics and Transportation
339(1)
13.3 Construction Quality Control
340(1)
13.4 Outage Management
341(2)
14 Instruction Manuals and Training for Air-Insulated Substations
343(1)
Mark McVey
14.1 Instruction Manuals
343(1)
14.2 General Training
345(1)
14.3 Operations, Installation, and Maintenance Training
346(1)
14.3.1 Installation Training
346(1)
14.3.2 Maintenance Policy
347(1)
14.4 Safety Training
348(1)
14.5 Safety Procedure for On-Site Work
350(1)
14.5.1 Work Planning
350(1)
14.5.2 Awareness
353(1)
14.5.3 Verification
353(2)
14.6 Design for Safety and Human Protection
355(4)
Part C: Gas-Insulated Substations
359(126)
Peter Glaubitz
15 Why Choose GIS?
361(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
15.1 Benefits of GIS
361(1)
15.2 Impact of Environmental Conditions on Switchgear
363(1)
15.3 Switchgear Impact on Environment
365(1)
15.4 Quality Assurance/Reliability
365(1)
15.5 Safety
367(1)
15.6 Life Cycle Costs
368(1)
15.7 Conclusion
368(1)
16 GIS Configuration
369(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
16.1 Establishing a Preliminary Configuration for the GIS
370(1)
16.2 Further Studies
370(1)
16.3 Detailed Design and Design Approval
370(1)
16.4 Manufacturing Period
371(1)
16.5 Selection of GIS Type
371(1)
16.6 Type of Construction
372(1)
16.6.1 Extent of SF6-Insulated Modules
373(1)
16.6.2 Hybrid Installation: Mixed Technology Systems
373(1)
16.6.3 Service Conditions
374(3)
16.7 Single-Line Diagram Design
377(1)
16.8 Layout Design
379(1)
16.9 Information to be Given by the User and the Manufacturer
380(1)
16.9.1 Basic User Input Data
380(1)
16.9.2 Basic Manufacturer Input Data
381(1)
16.9.3 Optimization
381(1)
References
381(2)
17 Insulation Coordination
383(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
17.1 General
383(1)
17.2 SF6 Breakdown Characteristic
384(1)
17.3 Insulation Coordination Procedure
385(1)
17.4 Determination of Withstand Voltages
387(1)
17.5 Actions Which May Be Taken to Achieve Insulation Coordination
387(1)
17.6 Information to Be Given by the User and the Manufacturer
388(1)
18 GIS Primary Components
389(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
18.1 Conductors
390(1)
18.2 Enclosures
390(1)
18.2.1 Three-Phase or Single-Phase-Enclosed
391(1)
18.2.2 Segregation of Gas Zones
393(1)
18.2.3 Insulating Spacers/Parts: Bushings
394(1)
18.2.4 Pressure Relief Devices: Rupture Disks
394(2)
18.3 Switching Devices
396(1)
18.3.1 Circuit Breakers
396(1)
18.3.2 Other Switches
397(1)
18.4 Current Transformers (CTs)/Core-in-Air CT
398(1)
18.5 Voltage Transformers (VTs)
400(1)
18.6 Nonconventional VTs and CTs
400(1)
18.7 Surge Arresters
402(1)
18.8 GIS Cable Connection
403(1)
18.9 Air Bushings
405(1)
18.10 Connection to Transformers and Reactors
405(1)
18.10.1 Direct Connection via SF6-Insulated Bus Ducts
405(1)
18.10.2 Connection via Cable
406(1)
18.10.3 Connection with Short Overhead Lines
406(1)
18.11 Connection Elements Within GIS
407(1)
18.11.1 Compensators
407(1)
18.11.2 Coupling Element
407(1)
18.11.3 X-, T-, and Angle-Type Enclosures
407(1)
18.12 Nameplates/Labeling
407(1)
18.13 Online Monitoring and Diagnostics
408(1)
18.14 Integration of Protection and Control Devices into GIS
409(1)
18.15 Information to Be Given by the User and the Manufacturer
409(2)
19 GIS Secondary Equipment
411(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
19.1 Interlocking
412(1)
19.2 Gas Monitoring
412(1)
19.3 GIS Condition Monitoring
413(1)
19.3.1 Partial Discharge (PD) Detection
413(1)
19.3.2 Fault Location
414(1)
19.4 Special GIS Demands on Protection System
414(1)
19.4.1 Protection System Timing
414(1)
19.4.2 Auto-Reclosing
414(1)
19.4.3 Busbar and Bay Protection
415(1)
19.4.4 Intertripping
415(1)
19.4.5 Earth Fault Protection
415(1)
19.5 Electromagnetic Compatibility
415(1)
19.6 Information to Be Given by the User and the Manufacturer
416(1)
19.6.1 Basic Users Input Data
416(1)
19.6.2 Basic Manufacturers Input Data
417(2)
20 Interfaces: Civil Works, Building, Structures, Cables, OHL, Transformers, and Reactors
419(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
20.1 Training of Operation Personnel
420(1)
20.2 Building/Civil Works
420(1)
20.2.1 Construction
420(1)
20.2.2 Space Requirements
421(1)
20.2.3 Handling Equipment
423(1)
20.2.4 Load, Walls and Ceilings
423(1)
20.2.5 Windows/Doors
424(1)
20.2.6 GIS Mounting Points
424(1)
20.2.7 Cooling/Heating and Ventilation
425(1)
20.2.8 Fire Protection
425(1)
20.2.9 Noise Abatement
425(1)
20.2.10 Cables
425(1)
20.2.11 Lighting and Socket Outlets
425(1)
20.2.12 Earthing
426(1)
20.3 Support Structures and Accessibility
426(1)
20.4 Information to Be Given by the User and the Manufacturer
426(1)
20.4.1 Basic Users Input Data
427(1)
20.4.2 Basic Manufacturers Input Data
427(2)
21 GIS Earthing
429(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
21.1 Effect of GIS on Design of Earthing Systems
430(1)
21.1.1 General
430(1)
21.1.2 Physical Size
430(1)
21.1.3 Transient Enclosure Voltage (TEV)
430(1)
21.1.4 Discontinuities
431(1)
21.1.5 Screening
431(1)
21.1.6 Effects on Personnel
432(1)
21.2 Design of GIS Earthing System
432(1)
21.2.1 Design of Earth Grid
432(1)
21.2.2 Connections to the Earth Grid
433(1)
21.2.3 Discontinuities
434(1)
21.2.4 Effects on Control Circuit
437(1)
21.2.5 Treatment of Sensitive Control Equipment
438(1)
21.2.6 Instrument Transformers
438(1)
21.3 Testing and Maintenance of Earthing Installations
438(1)
21.3.1 Power Frequency Compatibility
438(1)
21.3.2 High-Frequency Compatibility
439(2)
22 GIS Testing
441(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
22.1 Type Tests
442(1)
22.2 Routine Tests
442(1)
22.3 Tests After Installation On-Site
443(1)
22.4 Installation, On-Site Test, Commissioning, and Formal Acceptance
443(1)
22.5 Site Preparation
445(1)
22.6 Work Crew Preparation
445(1)
22.7 Installation of New GIS
446(1)
22.8 Installation of GIS Extensions
446(1)
22.9 Service Continuity
447(1)
22.10 Commissioning
447(1)
22.10.1 Commissioning of Primary Equipment
448(1)
22.10.2 Commissioning of Secondary Equipment
448(1)
22.10.3 Commissioning of the SF6 Insulation Medium
448(1)
22.11 Information to be Given by the Manufacturer and the User
449(1)
22.11.1 Basic Users Input Data
449(1)
22.11.2 Basic Manufacturers Input Data
449(2)
23 SF6, Its Handling Procedures and Regulations
451(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
23.1 The EU-F-Gas-Regulation (EU) 517/2014
453(1)
23.1.1 Leakage Detection Systems
454(1)
23.1.2 Handling and Repair
454(1)
23.1.3 Training and Certification
455(1)
23.1.4 Labeling
455(1)
23.2 SF6 Handling During Installation and Commissioning
455(1)
23.3 Storage and Transportation of SF6 Bottles
456(1)
23.4 Reuse of SF6
456(1)
23.5 Handling of SF6 Decomposition Products
458(1)
23.6 Information to Be Given by the Users and the Manufactures
459(1)
23.6.1 Basic Users Input Data
459(1)
23.6.2 Basic Manufacturers Input Data
459(1)
References
460(1)
24 Training, Service, and Maintenance of Gas-Insulated Substations
461(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
24.1 Training of Operation Personnel
462(1)
24.2 Operational Aspects and After Sales Support
462(1)
24.3 Types of Maintenance
462(1)
24.4 Maintenance Policy
463(1)
24.5 Operation and Maintenance Provisions
464(1)
24.5.1 Operational and Maintenance Safety
464(1)
24.5.2 Operational and Maintenance Opening Procedures
466(1)
24.5.3 Substation Equipment
469(1)
24.6 Special Aspects of Repair Maintenance after Major Dielectric Failure
470(1)
24.7 Basic Input Data and Additional Recommendations
471(1)
24.7.1 Information to Be Given by the User and the Manufacturer
472(1)
24.7.2 Additional Recommendations for the User and the Manufacturer
472(2)
24.8 General Training
474(1)
24.9 Training for Installation
475(1)
24.10 Training for Operating and Maintenance
475(1)
24.11 Specialized Training
476(1)
24.12 Information to Be Given by the User and the Manufacturer
476(1)
24.12.1 Basic Users Input Data
476(1)
24.12.2 Basic Manufacturers Input Data
477(2)
25 Execution of a GIS Substation Project
479(1)
Peter Glaubitz
Carolin Siebert
Klaus Zuber
25.1 Initiation of a Project
479(1)
25.2 Engineering Planning
480(1)
25.3 Planning the GIS Project Construction and Installation
480(1)
25.4 Site Preparation
482(1)
25.5 Installation of the New GIS
482(1)
25.6 Installation of GIS Extensions
482(1)
25.7 Equipment Access
482(1)
25.8 Preparation of Inquiry for Tendering
483(1)
25.9 Relevant Standards
483(2)
Part D: Mixed Technology Switchgear Substations and Gas Insulated Lines
485(80)
Tokio Yamagiwa
26 Mixed Technology Switchgear (MTS) Substations
487(1)
Tokio Yamagiwa
Colm Twomey
26.1 Introduction to MTS
487(1)
26.1.1 Why Use MTS?
490(1)
26.2 AIS, GIS, and MTS
491(1)
26.2.1 Insulation Technology Considerations
491(1)
26.2.2 AIS, GIS, and MTS Definitions
492(1)
26.2.3 Evaluation of Applicability of AIS, GIS, and MTS
493(3)
26.3 Conventional, Compact, and Combined Switchgear
496(1)
26.3.1 Installation and Functionality considerations
496(1)
26.4 Conventional, Compact, and Combined Switchgear Definition
497(1)
26.4.1 Examples of Compact and Combined Switchgear Assemblies
501(1)
26.5 Common Considerations of Insulation and Installation + Functionality
502(1)
26.6 Application of Standards to MTS
504(1)
26.7 Future Developments
505(1)
References
506(1)
27 Gas Insulated Lines (GIL)
507(1)
Hermann Koch
27.1 Basics
508(1)
27.1.1 Basic Explanation
508(1)
27.1.2 Properties of the Insulating Gas
509(1)
27.1.3 Definition
509(1)
27.1.4 Description
510(5)
27.2 Ratings
515(1)
27.2.1 GIL Electrical Parameters
515(1)
27.2.2 Directly Buried GIL
516(1)
27.2.3 Thermal Layout
516(1)
27.2.4 Short-Time Rating
517(1)
27.2.5 Insulation Coordination
518(1)
27.2.6 Standard Values
519(1)
27.2.7 Capacity of GIL
521(2)
27.3 Installation Options
523(1)
27.3.1 Directly Buried GIL
523(1)
27.3.2 GIL in Structures
528(1)
27.3.3 Automated Laying Processes of GIL
535(2)
27.4 Environmental Impact
537(1)
27.4.1 Environmental Life Cycle Assessment
537(1)
27.4.2 General Environmental Aspects
538(1)
27.4.3 Magnetic Fields
538(1)
27.4.4 Environmental Aspects
539(1)
27.5 Long-Term Test
539(1)
27.5.1 Feasibility Study of 420 kV GIL
539(1)
27.6 Example Projects
540(1)
27.6.1 PP9 Saudi Arabia
540(1)
27.6.2 Limberg, Austria
541(1)
27.6.3 Kelsterbach GIL
542(2)
27.7 Future Applications
544(1)
27.7.1 General
544(1)
27.7.2 Possible Future Uses of GIL Associated with Substations
544(2)
27.8 Project Handling
546(1)
27.8.1 Site Assembly
546(1)
27.8.2 Factory Preassembly
548(1)
27.8.3 Gas Handling
552(1)
27.8.4 High-Voltage Test
553(1)
27.8.5 Pressure Test
555(1)
27.9 Operation, Maintenance, and Repair
556(1)
27.9.1 Online Insulation Monitoring
556(1)
27.9.2 Bonding and Grounding for Permanent and Transient Voltages
556(1)
27.9.3 Operation
556(1)
27.9.4 Maintenance
557(1)
27.9.5 Repair Process
558(1)
27.10 Safety
559(1)
27.10.1 Safety Analysis
559(1)
27.10.2 Fire
559(2)
27.11 Cost Analysis
561(1)
27.11.1 Overall Economic Aspects
561(1)
References
562(3)
Substations: Volume 2
Part E: UHV and Offshore Substations
565(164)
Kyoichi Uehara
28 UHV Substations
567(24)
Kyoichi Uehara
28.1 UHV Substations
568(1)
28.2 Technical Requirements for UHV Substation Equipment
572(1)
28.3 Reliability Issues in Substation Equipment
576(1)
28.3.1 Data on Reliability Issues in Substation Equipment
576(3)
28.4 Transportation and On-Site Tests of UHV Substation
579(1)
28.4.1 General Consideration Concerning Transportation
579(1)
28.4.2 Transportation Restriction for Transformers
579(1)
28.4.3 On-Site Tests
582(1)
28.5 Maintenance and Diagnostic Tests
582(1)
28.6 Recommended Optimization of UHV Substation
582(1)
28.6.1 Insulation Coordination for UHV Substation
n583
28.6.2 Layout for UHV Substation
585(1)
28.6.3 On-Site Acceptance Test and Commissioning Tests
587(1)
28.6.4 Substation Comparison (GIS, Hybrid-IS, and AIS)
588(1)
28.7 Future UHV AC Transmission System Planning, Design, On-Site Assembly and Test, Maintenance, and Operation
589(1)
References
590(1)
29 AC Offshore Substations Associated with Wind Power Plants
591(140)
John Finn
Peter Sandeberg
29.1 Introduction and Fundamental Considerations
592(1)
29.1.1 Introduction
592(1)
29.1.2 Fundamental Considerations
594(5)
29.2 System Considerations
599(1)
29.2.1 Reliability and Availability
599(1)
29.2.2 Overloading Capability
602(1)
29.2.3 Substation Size and Number Required
602(1)
29.2.4 Grid Code Compliance
603(1)
29.2.5 Reactive Compensation and Voltage Control
l606
29.2.6 Fault Level
608(1)
29.2.7 General Substation Configuration
611(1)
29.2.8 Neutral Earthing
613(1)
29.2.9 Insulation Coordination
613(1)
29.2.10 Flicker and Voltage Fluctuations
615(1)
29.2.11 Systems Studies Required
617(1)
29.3 Electrical Equipment Considerations
617(1)
29.3.1 Introduction
617(1)
29.3.2 MV Switchgear
618(1)
29.3.3 Main Transformers and Reactors
626(1)
29.3.4 Earthing/Auxiliary Transformers
640(1)
29.3.5 HV Switchgear.
644(1)
29.3.6 Export and Inter-array Cables
648(1)
29.3.7 Site Tests and Commissioning
651(5)
29.4 Physical Considerations
656(1)
29.4.1 About Design Considerations
657(1)
29.4.2 Overall Health and Safety Aspects
658(1)
29.4.3 Fundamental Design Parameters
659(1)
29.4.4 Additional Design Inputs
660(1)
29.4.5 Development of Design
665(1)
29.4.6 Platform Concepts
674(1)
29.4.7 Substructure
675(1)
29.4.8 Fire and Explosion Design
681(2)
29.5 Substation Secondary Systems
683(1)
29.5.1 Power Supplies
683(1)
29.5.2 DC Supplies
686(1)
29.5.3 Protection
690(1)
29.5.4 Control and Supervisory Control and Data Acquisition (SCADA) System Requirements
698(1)
29.5.5 CCTV and Security Systems
703(1)
29.5.6 Navigation Aids
704(1)
29.5.7 Communications
705(1)
29.5.8 Equipment Accommodation and Environmental Management
706(1)
29.5.9 Maintenance Management
707(1)
29.5.10 Metering
707(1)
29.6 Special Considerations When Connected by HVDC Link
708(1)
29.6.1 System Design
710(1)
29.6.2 Grid Code Compliance
720(1)
29.6.3 Power Quality
723(1)
29.6.4 Technical Studies
726(1)
29.6.5 Protection, Control, and Communications
726(1)
References
727(2)
Part F: Secondary Systems
729(170)
John Finn
Ray Zhang
Yang Ruoling
30 Secondary Systems: Introduction and Scope
731(14)
John Finn
Adriaan Zomers
30.1 Auxiliary Systems
732(1)
30.2 Protection
732(1)
30.3 Control and Automatic Switching
732(1)
30.4 Metering and Monitoring
732(1)
30.5 Communications
733(1)
30.6 Digital Equipment
733(1)
30.7 Equipment Considerations and Interfaces
733(1)
30.8 Management of Secondary Systems
734(1)
30.9 General Considerations and Requirements
734(1)
30.9.1 Secondary System Functions
734(1)
30.9.2 Economic Aspects
737(1)
30.9.3 Operational and Maintenance Requirements
738(1)
30.9.4 Environmental Requirements
739(1)
30.9.5 Use in Seismic Areas, Shocks, and Vibrations
740(1)
30.9.6 Electromagnetic Compatibility
741(1)
30.9.7 Ergonomic Requirements
743(2)
31 Substation Auxiliary Systems
745(8)
Mick Mackey
31.1 Low-Voltage AC System
745(1)
31.2 Secure AC Auxiliary Supply Systems and Emergency Generation
746(1)
31.3 Batteries and DC Supply Systems
747(1)
31.4 Power System Interruption and "Black Start" Requirements
752(1)
32 Substation Protection
753(22)
Richard Adams
32.1 Principles and Philosophies
753(1)
32.1.1 Current-Operated Protection
754(1)
32.1.2 Impedance Protection
756(1)
32.1.3 Differential (Unit) Protection
758(1)
32.1.4 Tripping Philosophies
761(1)
32.1.5 Relay Settings
762(1)
32.2 Protection: Commonly Used Schemes
762(1)
32.2.1 Feeders
762(1)
32.2.2 Transformers
765(1)
32.2.3 Reactors
766(1)
32.2.4 Busbars
767(1)
32.3 Backup Protection Principles
767(1)
32.3.1 High-Set Overcurrent
768(1)
32.3.2 Circuit Breaker Fail
768(1)
32.4 Protection: Safety Considerations
769(1)
32.5 Fault Level Considerations
769(1)
32.6 Power System Faults, Types, Categories, Consequences, and Arc Energy
770(1)
32.7 Fuses HV and LV
771(1)
References
772(3)
33 Substation Control and Automatic Switching
775(22)
John Finn
33.1 Basic Control System
776(1)
33.1.1 Details of Conventional HMI
776(1)
33.1.2 Details of Computer-Based HMI
778(1)
33.1.3 Computer Performance Criteria
779(1)
33.1.4 Control from the Substation
779(1)
33.1.5 Control from a Network Control Center
780(1)
33.1.6 Architectures of Control Systems
781(1)
33.1.7 Extension and Modification Requirements
781(1)
33.1.8 Avoiding Unwanted Operations Within the Control System
782(1)
33.2 Interlocking
782(1)
33.3 Synchronizing
784(1)
33.4 Voltage Control
786(1)
33.4.1 Automatic Tap Change Control
786(1)
33.4.2 Automatic Reactive Switching
788(2)
33.5 Controlled Switching: Point on Wave Control
790(1)
33.6 Automatic Switching: Reclosing, Closing, and Operational Tripping
792(1)
33.6.1 Automatic Reclosing
792(1)
33.6.2 Automatic Closing
794(1)
33.6.3 Operational Tripping
794(1)
33.7 Frequency Control and Consumer Load Control
795(1)
33.7.1 Underfrequency Load Shedding
795(1)
33.7.2 Consumer Load Control
795(2)
34 Metering and Monitoring
797(6)
John Finn
34.1 Metering
797(1)
34.1.1 Accuracy Class
798(1)
34.1.2 Digital Measuring Equipment
799(1)
34.1.3 Transducers
799(1)
34.1.4 Digital Transducers
799(1)
34.2 Fault Locating
799(1)
34.3 Fault Recording and Event Recording
800(1)
34.4 Supervision and Alarms
801(1)
34.5 Monitoring
802(1)
35 Substation Communications
803(16)
John Finn
35.1 Introduction
804(1)
35.2 Communications Within the Substation
805(1)
35.2.1 Substation Automation with Electromechanical Relays
806(1)
35.2.2 Substation Automation with Numerical Relays
806(2)
35.3 Communications Outside of the Substation
808(1)
35.3.1 Information to Be Communicated
809(1)
35.3.2 Multiplexing
810(1)
35.3.3 Digital Hierarchies
810(1)
35.3.4 PDH, SDH, and SONET
810(4)
35.4 Media
814(1)
35.4.1 Pilot Wires
815(1)
35.4.2 Power Line Carrier Communication (PLCC)
)815
35.4.3 Microwave
816(1)
35.4.4 Basic Communication Requirements for Protections
817(1)
References
818(1)
36 Substation Digital Equipment
819(8)
Richard Adams
36.1 Digital Systems Within Substations and IEC 61850 Impacts
820(1)
36.2 Software and Firmware
824(1)
References
825(2)
37 Equipment Considerations and Interfaces for Substations
827(18)
John Finn
37.1 Equipment
828(1)
37.1.1 Circuit Breakers
828(1)
37.1.2 Current Transformers
828(1)
37.1.3 Voltage Transformers
831(1)
37.1.4 Other Plant
833(1)
37.2 Testing Associated with Primary Plant
834(1)
37.2.1 Circuit Breaker Interface Testing
834(1)
37.2.2 Primary Injection of Current Transformers
834(1)
37.3 Secondary System Isolation
835(1)
37.3.1 DC Voltage Isolation
835(1)
37.3.2 Trip Isolation
836(1)
37.3.3 Current Transformer Isolation
836(1)
37.3.4 Voltage Transformer Isolation
836(1)
37.4 Secondary Equipment Considerations
836(1)
37.4.1 Separation of Cubicles/Rooms
837(1)
37.4.2 DC Distribution
837(1)
37.4.3 Relay Rooms
837(1)
37.4.4 Cabling and Wiring
838(1)
37.4.5 Accommodation of Equipment and Ventilation
838(1)
37.4.6 Fire Detection and Extinguishing
839(2)
37.5 Earthing Practice
841(1)
37.5.1 Measures to Be Taken on Secondary Equipment
842(1)
37.5.2 Measures to Be Taken in the Installation
842(1)
37.5.3 Screening of Relay Rooms and Control Rooms
843(1)
References
843(2)
38 Asset Management of Secondary Systems of Substations
845(56)
Mick Mackey
38.1 Design, Installation, and Building Requirements
847(1)
38.2 Reliability Impacts
847(1)
38.2.1 Reliability and Availability of Systems/Components
847(1)
38.2.2 Redundancy
848(3)
38.3 Plant Labelling
851(1)
38.3.1 Panel/Kiosk Labelling
851(1)
38.3.2 Wire and Fiber Identification
851(1)
38.4 Quality Assurance Requirements and Testing
852(1)
38.4.1 Quality Assurance: Introduction
852(1)
38.4.2 Quality Assurance: Manufacturer's Perspective
855(1)
38.4.3 Quality Assurance: Utility's Perspective
857(1)
38.4.4 Laboratory, Factory, and On-Site Tests
859(1)
38.4.5 Test of Software
861(1)
38.4.6 Test of Printed Circuit Boards
863(1)
38.4.7 Cost-Benefit
865(1)
38.5 Maintenance
865(1)
38.5.1 General
865(1)
38.5.2 Cause and Effects of Deterioration and Aging Factors
866(1)
38.5.3 Maintenance of Secondary Equipment
867(1)
38.5.4 Fault-Finding and Recovery: Influence on Design
868(1)
38.5.5 Conventional Equipment
869(1)
38.5.6 Microcomputer-Based Equipment
869(1)
38.5.7 Spare Parts
874(1)
38.5.8 Training of Staff
874(1)
38.6 Asset Lifetime Expectancy and Replacement
875(1)
38.6.1 General Considerations
876(1)
38.6.2 Updating of Secondary Systems with Computer-Based Systems
879(1)
38.7 Security of Electronic Systems
880(1)
38.7.1 Cyber-Induced Attacks
881(1)
38.7.2 Intentional Electromagnetic Interference
889(6)
38.8 Physical Security Requirements
895(1)
38.8.1 Site Access
896(1)
38.8.2 Alarm System
896(1)
38.8.3 CCTV and Intruder Alarm Systems
896(1)
References
897(2)
Part G: Environmental Impact of and on Substations
899(42)
Jarmo Elovaara
39 Introduction to the Environmental Impact of and on Substations
901(2)
Jarmo Elovaara
40 Impact of Ambient Conditions on Substations
903(14)
Jarmo Elovaara
Angela Klepac
40.1 Normal Ambient Conditions
904(1)
40.2 Polluted Conditions
906(1)
40.3 Abnormal Ambient Conditions
907(1)
40.3.1 Heavy Wind and Storms
907(1)
40.3.2 Winter Conditions
909(1)
40.3.3 Substations in Very Hot and Dry Conditions
s910
40.3.4 Earthquakes
912(1)
40.4 Substations under Special Conditions
913(1)
40.5 Effects of Wild Life
913(4)
41 Electromagnetic Interference (EMI) in Substations
917(2)
Jarmo Elovaara
42 Impact of the Substation on the Environment
919(10)
Jarmo Elovaara
42.1 Site Selection and Impact of the Substation on Environment in Construction Phase
920(1)
42.2 Impact of the Substation during Operation
921(1)
42.2.1 Visual Impact
921(1)
42.2.2 Noise
923(1)
42.2.3 Electromagnetic Fields
925(3)
References
928(1)
43 Special Risks Related to Substation Equipment (Transformers, Reactors, and Capacitor Banks)
929(4)
Jarmo Elovaara
44 Use of SF6 and CF4
933(6)
Jarmo Elovaara
44.1 Properties and Electrotechnical Use of SF6 Gas and SF6-Based Gas Mixtures
933(1)
44.2 Obligations to the User of SF6 and SF6 Gas Mixtures
935(1)
44.3 Possibilities to Replace SF6 with Some Other Insulating Gas
936(1)
References
937(2)
45 Handling, Recycling, Disposal, and Reuse of Substations
939(4)
Jarmo Elovaara
Part H: Substation Management Issues
941(124)
Johan Smit
46 Asset Management in an Electric Infrastructure
943(10)
Alan Wilson
Mark Osborne
Johan Smit
46.1 Managing the Asset Base
944(1)
46.2 Driving Performance
945(1)
46.3 The Asset Manager Role
946(1)
46.4 Utility Organization to Achieve Business Goals
947(1)
46.5 The Historical Context
947(1)
46.6 Legislation and Standards
949(1)
46.7 Asset Management Tools
950(3)
47 Developing Strategic Policies
953(8)
Paul Leemans
Mark Osborne
Johan Smit
47.1 Asset Management Roles
955(1)
47.2 Setting Corporate Strategy
957(1)
47.3 Asset Intervention Planning
959(1)
References
960(1)
48 Whole Life Management of Substations
961(12)
Nhora Barrera
Mark Osborne
Johan Smit
48.1 Life-Cycle Factors
962(1)
48.2 Life-Cycle Phases
962(1)
48.3 Life-Cycle Cost Analysis
963(1)
48.4 Application of Whole-Life Costing
965(1)
48.4.1 Design Process
966(1)
48.4.2 Procurement Process
966(1)
48.4.3 Construction Process
967(1)
48.4.4 Testing and Commissioning Process
967(1)
48.4.5 Maintenance Regimes and Condition Assessment Techniques
967(1)
48.4.6 End of Life Options
968(1)
48.5 Evaluation of Substation Life-Cycle Costs
968(1)
48.6 Optimizing Asset Management
969(1)
48.6.1 Reliability Centered Asset Management
969(1)
48.6.2 Stochastic Optimization Algorithm
970(1)
48.6.3 Standard Substation Bays
970(1)
48.7 Managing the Design for the Future
971(2)
49 Commissioning
973(24)
John Finn
Mark Osborne
Johan Smit
49.1 Introduction
974(1)
49.2 Workflow
974(1)
49.3 Stage 1 Pre-commissioning
977(1)
49.3.1 Purpose and General Principles
977(1)
49.3.2 Order for Inspection and Testing
978(1)
49.3.3 LVAC Supplies
979(1)
49.3.4 Building Services
979(1)
49.3.5 Batteries and Chargers
979(1)
49.3.6 Switchgear
980(1)
49.3.7 Transformers
981(1)
49.3.8 Power Cables
983(1)
49.3.9 Earthing System
986(1)
49.3.10 Instrument Transformers
988(1)
49.3.11 Protection Equipment
989(1)
49.3.12 Control, Indications, and Alarms
990(1)
49.3.13 Other Equipment
991(1)
49.3.14 Overall Checks, Interlocking, Synchronizing, etc.
991(1)
49.3.15 Final Pre-energisation Checks
992(1)
49.4 Stage 2 Energization and Final Commissioning
992(1)
49.4.1 Preparation of Switching Program
993(1)
49.4.2 Authorization to Proceed to Stage 2
993(1)
49.4.3 General Principle
994(1)
49.4.4 Soak Testing
994(1)
49.4.5 Load Testing
994(1)
49.4.6 Handover for Operation
995(1)
49.5 Documentation
995(1)
References
996(1)
50 Substation Maintenance Strategies
997(14)
Ravish Mehairjan
Mark Osborne
Johan Smit
50.1 Definitions
997(1)
50.2 Maintenance Strategies
998(1)
50.2.1 Failure-Based Maintenance (FBM)
999(1)
50.2.2 Time-Based Maintenance (TBM)
999(1)
50.2.3 Condition-Based Maintenance (CBM)
1000(1)
50.2.4 Reliability Centered Maintenance (RCM)
1001(1)
50.2.5 Risk-Based Maintenance (RBM)
1003(1)
50.3 CIGRE Survey of Maintenance Strategies
1004(1)
50.4 Maintenance Management Strategies
1004(1)
50.5 Developments in Maintenance Management
1006(1)
50.6 Key Elements of Maintenance Management
1008(1)
50.7 Developing Future Strategies
1009(2)
51 Substation Condition Monitoring
1011(32)
Nicolaie Fantana
Mark Osborne
Johan Smit
51.1 Definitions and Terminology
1012(1)
51.2 Incentives for Condition Monitoring
1014(1)
51.3 Condition Monitoring Principles
1016(1)
51.4 Condition Monitoring Strategies
1018(1)
51.4.1 CIGRE Survey of Common Preventive Maintenance Methods
1019(1)
51.4.2 In-Service Monitoring
1019(6)
51.5 Permanent Monitoring
1025(1)
51.6 Analysis and Diagnostics
1026(1)
51.6.1 Traditional Condition Monitoring
1027(1)
51.6.2 On-line Condition Monitoring (OLCM)
1027(2)
51.7 Evolving Condition Monitoring Strategies
1029(1)
51.7.1 Hybrid Condition Monitoring
1029(1)
51.7.2 Holistic Condition Monitoring
1029(2)
51.8 Data Collection and Management for Condition Monitoring
1031(1)
51.8.1 Data Collection
1031(1)
51.8.2 Data Management Over Equipment Lifetime
e1033
51.9 Condition Data Analytics
1036(1)
51.10 Value from Condition Monitoring
1037(1)
51.11 Outlook for Condition Monitoring
1042(1)
References
1042(1)
52 Managing Asset Risk and Reliability of Substations
1043(14)
Gerd Balzer
Mark Osborne
Johan Smit
52.1 Risk Basics
1044(1)
52.2 Risk Assessment Process
1045(1)
52.3 Applying Risk Analysis
1047(1)
52.3.1 Failure Mode and Effect Analysis
1048(1)
52.3.2 Examples
1051(2)
52.4 Residual Life Concepts Applied to HV GIS
1053(1)
52.4.1 Asset Life
1054(1)
52.4.2 Obsolescence Management
1055(1)
52.4.3 Life Extension Functional Requirements
1055(1)
References
1056(1)
53 Managing Obsolete and New Technologies in Substations Together
1057(10)
Jan Bednarik
Mark Osborne
Johan Smit
53.1 Introduction
1058(1)
53.2 HV Equipment Replacement
1058(1)
53.3 Protection Upgrades
1058(1)
53.4 Control System Upgrade
1059(1)
53.4.1 Existing Hardwired Control Systems May Need to be Modified/Expanded to Contain New Bays
1060(1)
53.4.2 A New Numerical Control System May Replace an Existing Hardwired or Numerical Scheme
1060(1)
53.4.3 Hybrid: A New Numerical Control System May be Used for New Bays While Keeping the Existing System for Existing Bays
1060(1)
53.5 New Bay Installation
1061(1)
53.5.1 New Capacity
1061(1)
53.5.2 Increase the Load Capacity
1061(1)
53.5.3 Change in Busbar Configuration
1061(1)
53.6 Managing the Design for the Future
1061(1)
53.7 Concluding Remarks
1061(1)
References
1062(3)
Part I: Future Developments
1065
Mark Osborne
54 Future Developments in Substation Design
1067
Mark Osborne
54.1 Evolution of Substations to Date
1068(1)
54.1.1 Background
1068(1)
54.1.2 Looking Ahead
1068(2)
54.2 Digital Substations
1070(1)
54.2.1 Automated System Operation
1071(1)
54.2.2 Asset Awareness
1071(1)
54.2.3 Commissioning and Testing
1071(2)
54.3 Novel Materials and Technologies
1073(1)
54.3.1 Drivers for New Materials
1073(1)
54.3.2 Generic Issues to Consider
1073(1)
54.3.3 Commissioning and Testing
1074(1)
54.3.4 Roles for New Technology
1074(1)
54.4 Designing for Modularity and Flexibility
1075(1)
54.4.1 New Installation Techniques
1076(1)
54.4.2 Changing Attitudes to Maintenance
1077(1)
54.5 DC Substations
1077(1)
54.5.1 Design Issues
1078(1)
54.5.2 Standards
1078(1)
54.6
Chapter Summary
1078(1)
References
1079
CIGRE Study Committee B3 is responsible for the design, construction, maintenance and ongoing management of substations and for electrical installation in power stations, excluding generators.

SC B3 serves a broad range of target groups in the Electric Power Industry whose needs include the technical, economic, environmental and social considerations of this scope in varying degrees.

Major objectives include increased reliability and availability, asset management, environmental impact containment, and the adoption of appropriate technological advances in equipment and systems to achieve these objectives.

Terry Krieg was born in Gawler, South Australia, where he currently resides. He studied electrical engineering at the University of South Australia following a Certificate of Electrical Engineering and an apprenticeship as an Electrical Instrument Maker. He was appointed Chairman of the CIGRE Substation Study Committee B3 (Substations) in 2012. In a career that spans more than 40 years in the power sector, he has held senior management and technical positions at a number of Australian power utilities in generation, transmission, and distribution, where he led the introduction of new approaches to maintenance, substation design standardization, online condition monitoring, asset management, and risk management. He has held senior technical roles including major substation design, test and commissioning, condition monitoring, high voltage, and diagnostic testing of high voltage network plant. An honors (first class) graduate of the University of South Australia (Bachelor of Engineering Electrical), he is also a Fellow of the Institute of Engineers Australia (FIEAust) and a Registered Professional Engineer Queensland (RPEQ). He is an endorsed assessor for the asset management specification BSiPAS-55:2008 and, as a consultant, assists companies to develop asset management practices aligned to ISO 55000. In addition, Terry is a graduate of the Australian Institute of Company Directors. He has presented more than 45 engineering and management papers and keynote addresses on aspects of substations, strategic asset management, diagnostics and monitoring, and the management of power networks to a number of international industry conferences and events.







John Finn worked initially in the electricity supply industry in the UK in protection, operation and maintenance, and system studies. He then joined private industry working with contractors on power station and substation projects in the UK and overseas at voltages up to 500 kV and as diverse as the initial 400 kV supergrid for China Light and Power to project-managing the power supplies for the Channel Tunnel between England and France. In his role as an in-house engineering consultant with Siemens in the UK, he was involved in developing the onshore and offshore substation designs associated with offshore wind farms. He has been involved in CIGRE as Area Advisor on Substation Concepts from 2002 to 2006 and convenor of working groups on standardization and innovation and guidelines for offshore substations. He received the Technical Committee Award for contributions to Study Committee B3 in 2006 and the Distinguished Member Award in 2008. He is currently Secretary for the UK National Committee of CIGRE.