Atjaunināt sīkdatņu piekrišanu

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design [Mīkstie vāki]

  • Formāts: Paperback / softback, 80 pages, height x width x depth: 292x205x7 mm, weight: 266 g
  • Sērija : IAEA Nuclear Energy Series
  • Izdošanas datums: 30-May-2022
  • Izdevniecība: IAEA
  • ISBN-10: 9201002211
  • ISBN-13: 9789201002211
  • Mīkstie vāki
  • Cena: 49,51 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 80 pages, height x width x depth: 292x205x7 mm, weight: 266 g
  • Sērija : IAEA Nuclear Energy Series
  • Izdošanas datums: 30-May-2022
  • Izdevniecība: IAEA
  • ISBN-10: 9201002211
  • ISBN-13: 9789201002211

This publication documents the results of an IAEA coordinated research project (CRP)on the application of computational fluid dynamics (CFD) codes for nuclear power plant design. The main objective was to benchmark CFD codes, model options and methods against CFD experimental data under single phase flow conditions. This publication summarizes the current capabilities and applications of CFD codes, and their present qualification level, with respect to nuclear power plant design requirements. It is not intended to be comprehensive, focusing instead on international experience in the practical application of these tools in designing nuclear power plant components and systems. The guidance in this publication is based on inputs provided by international nuclear industry experts directly involved in nuclear power plant design issues, CFD applications, and in related experimentation and validation highlighted during the CRP.

1 Introduction
1(1)
1.1 Background
1(1)
1.2 Objective
1(1)
1.3 Scope
2(1)
1.4 Structure
2(1)
2 Roles of System Codes and Computational Fluid Dynamics in the Nuclear Power Plant Design Process
2(2)
3 Activities Involving Computational Fluid Dynamics in Support of Nuclear Power Plant Design
4(11)
3.1 Reactor designers
4(1)
3.2 Utilities
5(2)
3.3 Code developers of computational fluid dynamics
7(2)
3.4 Research organizations
9(6)
4 Status of Verification and Validation for the Use of Computational Fluid Dynamics in Nuclear Power Plant Design
15(2)
4.1 Design applications
15(1)
4.2 Validation gaps and issues involved
16(1)
5 Future Use of Computational Fluid Dynamics for Selected Reactor Types
17(8)
5.1 Supercritical water reactor
17(1)
5.2 Water-water energetic reactor
18(2)
5.3 Sodium cooled fast reactors
20(3)
5.4 Pressurized water reactors
23(2)
6 Best Practice Guidelines in the Use of Computational Fluid Dynamics for Nuclear Power Plant Design
25(9)
6.1 Best practice guidelines for safety analyses
25(2)
6.2 Specific examples
27(7)
7 Summary of Experimental Requirements for Producing Computational Fluid Dynamics Grade Data
34(2)
7.1 General experimental requirements
34(1)
7.2 Validation of two phase flow modelling for computational fluid dynamics
35(1)
8 User Qualification
36(5)
8.1 General requirements for practitioners of computational fluid dynamics
36(1)
8.2 Specific knowledge areas
36(1)
8.3 Summary of training courses in computational fluid dynamics for reactor design
37(4)
9 Uncertainty Quantification
41(11)
9.1 Overview
41(2)
9.2 Aspects of uncertainty quantification
43(5)
9.3 The GEMIX benchmark
48(3)
9.4 Conclusions
51(1)
10 Gaps in Computational Fluid Dynamics Technology Applied to Nuclear Power Plant Design Issues
52(12)
10.1 Verification and validation
52(2)
10.2 Range of application of turbulence models
54(3)
10.3 Stratification and buoyancy effects
57(1)
10.4 Coupling system/computational fluid dynamics codes
57(4)
10.5 Coupling with other physics codes
61(1)
10.6 Computing power limitations
62(2)
11 Conclusions
64(3)
References 67(10)
Abbreviations 77(2)
Contributors to Drafting and Review 79(1)
Structure of the Iaea Nuclear Energy Series 80