|
|
1 | (14) |
|
|
1 | (2) |
|
|
1 | (1) |
|
1.1.2 Why Pattern Representation? |
|
|
2 | (1) |
|
1.1.3 What Is Pattern Representation? |
|
|
2 | (1) |
|
1.1.4 How to Represent Patterns? |
|
|
2 | (1) |
|
1.1.5 Why Represent Patterns as Vectors? |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (3) |
|
|
3 | (1) |
|
1.2.2 Similarity Function |
|
|
4 | (1) |
|
1.2.3 Relation Between Dot Product and Cosine Similarity |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.3.2 Representation of a Class |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (7) |
|
1.4.1 Nearest Neighbor Classifier (NNC) |
|
|
7 | (1) |
|
1.4.2 K-Nearest Neighbor Classifier (KNNC) |
|
|
7 | (1) |
|
1.4.3 Minimum-Distance Classifier (MDC) |
|
|
8 | (1) |
|
1.4.4 Minimum Mahalanobis Distance Classifier |
|
|
9 | (1) |
|
1.4.5 Decision Tree Classifier: (DTC) |
|
|
10 | (2) |
|
1.4.6 Classification Based on a Linear Discriminant Function |
|
|
12 | (1) |
|
1.4.7 Nonlinear Discriminant Function |
|
|
12 | (1) |
|
1.4.8 Naive Bayes Classifier: (NBC) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
2 Linear Discriminant Function |
|
|
15 | (12) |
|
|
15 | (2) |
|
|
15 | (2) |
|
|
17 | (2) |
|
2.3 Linear Discriminant Function |
|
|
19 | (4) |
|
|
19 | (1) |
|
2.3.2 Negative Half Space |
|
|
19 | (1) |
|
2.3.3 Positive Half Space |
|
|
19 | (1) |
|
2.3.4 Linear Separability |
|
|
20 | (1) |
|
2.3.5 Linear Classification Based on a Linear Discriminant Function |
|
|
20 | (3) |
|
2.4 Example Linear Classifiers |
|
|
23 | (4) |
|
2.4.1 Minimum-Distance Classifier (MDC) |
|
|
23 | (1) |
|
2.4.2 Naive Bayes Classifier (NBC) |
|
|
23 | (1) |
|
2.4.3 Nonlinear Discriminant Function |
|
|
24 | (1) |
|
|
25 | (2) |
|
|
27 | (14) |
|
|
27 | (1) |
|
3.2 Perceptron Learning Algorithm |
|
|
28 | (4) |
|
3.2.1 Learning Boolean Functions |
|
|
28 | (2) |
|
|
30 | (1) |
|
3.2.3 Why Should the Learning Algorithm Work? |
|
|
30 | (1) |
|
3.2.4 Convergence of the Algorithm |
|
|
31 | (1) |
|
3.3 Perceptron Optimization |
|
|
32 | (2) |
|
|
33 | (1) |
|
3.3.2 Nonlinearly Separable Case |
|
|
33 | (1) |
|
3.4 Classification Based on Perceptrons |
|
|
34 | (4) |
|
3.4.1 Order of the Perceptron |
|
|
35 | (2) |
|
3.4.2 Permutation Invariance |
|
|
37 | (1) |
|
3.4.3 Incremental Computation |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
|
40 | (1) |
|
4 Linear Support Vector Machines |
|
|
41 | (16) |
|
|
41 | (2) |
|
4.1.1 Similarity with Perceptron |
|
|
41 | (1) |
|
4.1.2 Differences Between Perceptron and SVM |
|
|
42 | (1) |
|
4.1.3 Important Properties of SVM |
|
|
42 | (1) |
|
|
43 | (6) |
|
4.2.1 Linear Separability |
|
|
43 | (1) |
|
|
44 | (2) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (2) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (2) |
|
4.5.1 Results on Multiclass Classification |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
56 | (1) |
|
|
57 | (12) |
|
|
57 | (2) |
|
5.1.1 What Happens if the Data Is Not Linearly Separable? |
|
|
57 | (1) |
|
5.1.2 Error in Classification |
|
|
58 | (1) |
|
5.2 Soft Margin Formulation |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
5.2.3 Difference Between the Soft and Hard Margin Formulations |
|
|
60 | (1) |
|
5.3 Similarity Between SVM and Perceptron |
|
|
60 | (2) |
|
5.4 Nonlinear Decision Boundary |
|
|
62 | (2) |
|
5.4.1 Why Transformed Space? |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
5.4.4 Example Kernel Functions |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (2) |
|
5.6.1 Iris Versicolour and Iris Virginica |
|
|
65 | (1) |
|
5.6.2 Handwritten Digit Classification |
|
|
66 | (1) |
|
5.6.3 Multiclass Classification with Varying Values of the Parameter C |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
67 | (2) |
|
6 Application to Social Networks |
|
|
69 | (16) |
|
|
69 | (3) |
|
|
69 | (1) |
|
6.1.2 How Do We Represent It? |
|
|
69 | (3) |
|
6.2 What Is a Social Network? |
|
|
72 | (2) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
6.2.4 Homogeneous and Heterogeneous Networks |
|
|
73 | (1) |
|
6.3 Important Properties of Social Networks |
|
|
74 | (1) |
|
6.4 Characterization of Communities |
|
|
75 | (2) |
|
6.4.1 What Is a Community? |
|
|
75 | (1) |
|
6.4.2 Clustering Coefficient of a Subgraph |
|
|
76 | (1) |
|
|
77 | (2) |
|
6.5.1 Similarity Between a Pair of Nodes |
|
|
78 | (1) |
|
|
79 | (4) |
|
|
80 | (1) |
|
|
81 | (1) |
|
6.6.3 Link Prediction based on Supervised Learning |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
83 | (2) |
|
|
85 | (4) |
Glossary |
|
89 | (2) |
Index |
|
91 | |