Atjaunināt sīkdatņu piekrišanu

Surveys in Noncommutative Geometry [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 189 pages, weight: 369 g, Illustrations
  • Sērija : Clay Mathematics Proceedings
  • Izdošanas datums: 30-Nov-2006
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821838466
  • ISBN-13: 9780821838464
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 70,32 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 189 pages, weight: 369 g, Illustrations
  • Sērija : Clay Mathematics Proceedings
  • Izdošanas datums: 30-Nov-2006
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821838466
  • ISBN-13: 9780821838464
Citas grāmatas par šo tēmu:
In June 2000, the Clay Mathematics Institute organized an Instructional Symposium on Noncommutative Geometry in conjunction with the AMS-IMS-SIAM Joint Summer Research Conference. These events were held at Mount Holyoke College in Massachusetts from June 18 to 29, 2000. The Instructional Symposium consisted of several series of expository lectures which were intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject.Those expository lectures have been edited and are reproduced in this volume. The lectures of Rosenberg and Weinberger discuss various applications of noncommutative geometry to problems in 'ordinary' geometry and topology. The lectures of Lagarias and Tretkoff discuss the Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory. Higson gives an account of the 'residue index theorem' of Connes and Moscovici. Noncommutative geometry is to an unusual extent the creation of a single mathematician, Alain Connes. The present volume gives an extended introduction to several aspects of Connes' work in this fascinating area.
A minicourse on applications of non-commutative geometry to topology by
J. Rosenberg On Novikov-type conjectures by S. S. Chang and S. Weinberger The
residue index theorem of Connes and Moscovici by N. Higson The Riemann
hypothesis: Arithmetic and geometry by J. C. Lagarias Noncommutative geometry
and number theory by P. Tretkoff.