Atjaunināt sīkdatņu piekrišanu

E-grāmata: Sustainability in Engineering Design

(Managing Director of Segelocum Ltd, a customer-focused designed education consultancy ), (Design Engineer and Educator responsible for Engineering Design in the Department of Engineering and Technology at the University of Huddersfield)
  • Formāts: PDF+DRM
  • Izdošanas datums: 11-Feb-2014
  • Izdevniecība: Academic Press Inc.(London) Ltd
  • Valoda: eng
  • ISBN-13: 9780124045910
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 47,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 11-Feb-2014
  • Izdevniecība: Academic Press Inc.(London) Ltd
  • Valoda: eng
  • ISBN-13: 9780124045910
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Johnson and Gibson present this undergraduate text in engineering sustainability. The first two chapters go over general principles of engineering design and the history of design approaches. Chapter 3 then discusses sustainability and its application to engineering design, including sustainable manufacture, sustainable use, and sustainable disposal. The development process and management tools are discussed, as well as written and graphical communications, performance prediction, and the the concept of whole-life control of engineered products. The final three chapters assess the consumer and legislator drivers of sustainability demand, the "triple bottom line" approach to sustainability strategy, and future predictions including an emphasis on "starting where we are" and making the best of a nonideal past. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Designed for use in engineering design courses, and as a reference for industry professionals learning sustainable design concepts and practical methods, Sustainability in Engineering Design focuses on designers as the driving force behind sustainable products. This book introduces sustainability concepts and explains the application of sustainable methods to the engineering design process.

The book also covers important design topics such as project and team management, client management, performance prediction, and the social and environmental effects of sustainable engineering design. These concepts and methods are supported with a wealth of worked examples, discussion questions, and primary case studies to aid comprehension.

  • Applies research-based methods to achieve real-world results for rapidly evolving industry trends
  • Focuses on design engineers as the starting point of creating sustainable design
  • Provides practical methods and design tools to guide engineering designers in creating sustainably designed and engineering products
  • Incorporates all aspects of sustainable engineering design, including the material selection, production, and marketing of products
  • Includes cutting-edge sustainable design model case studies based on the authors' own research and experiences

Recenzijas

"...this book must be read by all engineers regardless of their specializations. It should also be read by all graduating students of engineering as they would be future designers of products and systems." --International Journal of Performability Engineering, September 2014

Papildus informācija

Sustainable products start at the design phase. Learn how to integrate sustainability into your product design process with this concise and applied approach.
Preface xv
Foreword xvii
Book Synopsis xix
Introduction xxi
Chapter 1 Engineering Design: An Overview 1(20)
1.1 What Is Design?
1(1)
1.2 Definition of Design and Overview of the Design Process
2(2)
1.3 Design Activities
4(2)
1.4 Design Information
6(1)
1.5 Design Evolution
7(3)
1.6 Design Information Output
10(1)
1.7 Qualities of the Designer
10(2)
1.8 Attention to Detail
12(1)
1.9 The Whole Picture
12(2)
1.10 Classic Engineering Design-to-Manufacture Model
14(1)
1.11 Overall Design Objectives and the Triple Bottom Line
15(4)
1.11.1 Overall Design Objectives
15(1)
1.11.2 First Bottom Line: Profit
16(1)
1.11.3 Second Bottom Line: People and Society
16(1)
1.11.4 The Third Bottom Line: Environmental Impact and Sustainability
16(2)
1.11.5 Triple Bottom Line and Design Objectives Comparison
18(1)
References
19(2)
Chapter 2 Design Approach, Philosophy, and Normal Approach Design Model 21(44)
2.1 That "Eureka" Moment
21(1)
2.2 An Historical Approach to Design
21(3)
2.3 The Design Approach
24(1)
2.4 Attributes of a Successful Design Engineer
25(5)
2.4.1 A Creative Attitude
28(1)
2.4.2 Constructive Discontent
29(1)
2.4.3 A Positive Outlook
29(1)
2.4.4 An Open Mind
29(1)
2.4.5 Design Courage
29(1)
2.5 The Classic Design Approach
30(2)
2.6 Design Specifications
32(3)
2.6.1 Product Design Specification (Target Specification) (PDS)
32(1)
2.6.2 Functional Parameters and Metrics
33(1)
2.6.3 Concept Design Specification (CDS)
34(1)
2.6.4 Final Design Specification (FDS)
35(1)
2.6.5 The Product Specification (PS)
35(1)
2.7 Design Phases
35(1)
2.8 Phase 1
36(7)
2.8.1 Preliminary Investigation of the Design Challenge
36(1)
2.8.2 The Brief
36(1)
2.8.3 Exploration of the Brief
36(2)
2.8.4 Exploration and Research Outside the Brief
38(1)
2.8.5 Cost and Sustainability
39(2)
2.8.6 Factors to Consider for the Product Design Specification
41(1)
2.8.7 Metrics
42(1)
2.8.8 Preliminary Investigation Overview
43(1)
2.9 Phase 2
43(313)
2.9.1 Generation of Solution Possibilities
43(1)
2.9.2 Strategic Thinking
43(1)
2.9.3 Solution Generation
44(1)
2.9.4 The Tools of Creativity
44(2)
2.9.5 Solution Evaluation and Selection
46(3)
2.9.6 Use of the Morphological Chart
49(2)
2.9.7 Benefits of a Structured Selection and Evaluation Method
51(1)
2.9.8 Concept Design
51(2)
2.9.9 Concept Design Specification
53(2)
2.9.10 Sustainability
55(301)
2.10 Phase 3
356
2.10.1 Phase 3 Detail Design: Initial Considerations
56(2)
2.10.2 Modeling and Detail Design Approach
58(3)
2.10.3 The Design Process: Information Output
61(1)
2.11 Final Design Specification
61(1)
2.12 Product Specification
61(2)
2.13 Prototypes
63(1)
References
63(2)
Chapter 3 Sustainability and Its Application Within Engineering Design 65(48)
3.1 What Is Sustainability?
65(1)
3.2 Is Sustainability Achievable?
66(1)
3.3 Sustainability: Past and Present
67(4)
3.4 The Classic Design and Manufacture Model
71(1)
3.5 The Taguchi Approach to Quality Manufacturing
72(1)
3.6 The Taguchi Analogy Applied to Sustainable Engineering Design
72(1)
3.7 Sustainable Sourcing (Ecosourcing)
73(4)
3.7.1 Transportation
74(1)
3.7.2 Techniques
75(1)
3.7.3 Managed Sources
75(1)
3.7.4 Material Flow Systems: Open and Closed Loop
76(1)
3.7.5 Recycle
76(1)
3.7.6 Designers' Duty
76(1)
3.8 Design for Sustainable Manufacture (Sustainable Manufacture Value, or SMV)
77(4)
3.8.1 The Smart Factory
77(4)
3.9 Design for Sustainable Use (Sustainable Use Value, or SUV)
81(2)
3.9.1 Design Optimization
81(1)
3.9.2 Incorporate Equipment That Gives Back
82(1)
3.9.3 Reduce Energy Use
82(1)
3.9.4 Use of Natural Energy
82(1)
3.9.5 Energy Storage
82(1)
3.10 Design for Sustainable Maintenance (Sustainable Maintenance Value, or SMaV)
83(5)
3.10.1 The Need for Maintenance
83(4)
3.10.2 Lubrication
87(1)
3.11 Design for Sustainable Disposal (Sustainable Disposal Value, or SDV)
88(8)
3.11.1 Recycling
89(1)
3.11.2 Repair and Refurbish
89(2)
3.11.3 Reuse and Refurbish
91(5)
3.11.4 Reduce
96(1)
3.12 Giveback
96(2)
3.13 The Measurement of Sustainability
98(1)
3.13.1 Sustainable Measurement Using Carbon Dioxide
98(1)
3.13.2 Energy as a Measurement Parameter
99(1)
3.14 Actual Measurement of Sustainability
99(3)
3.15 Sustainability Compromise
102(2)
3.16 Conclusions
104(1)
3.17 Sustainable Engineering Design: Necessity or Luxury?
105(1)
References
106(1)
Appendix 3.1
107(1)
Appendix 3.2
108(1)
Appendix 3.3
109(4)
Chapter 4 The Tools of the Design Process and Management of Design 113(68)
4.1 Introduction
113(5)
4.1.1 Product Development: An Introduction
113(1)
4.1.2 Marketing
113(1)
4.1.3 Design
113(1)
4.1.4 Manufacturing
114(1)
4.1.5 Duration and Cost of Product Development
114(2)
4.1.6 The Challenges of Product Development
116(1)
4.1.7 Trade-Offs
117(1)
4.1.8 Market Dynamics
117(1)
4.1.9 Details
117(1)
4.1.10 Time Pressure
117(1)
4.1.11 Economics
117(1)
4.1.12 Organizational Realities
118(1)
4.2 Development Processes
118(12)
4.2.1 Processes Involved in Product Development
118(1)
4.2.2 Quality Assurance
119(1)
4.2.3 Coordination
119(1)
4.2.4 Planning
119(1)
4.2.5 Management
119(1)
4.2.6 Improvement
120(1)
4.2.7 The Generic Product Development Process
120(5)
4.2.8 The Approach to Concept Development
125(5)
4.3 Systematic Approach to Design
130(13)
4.3.1 The Primary Need
130(1)
4.3.2 The Solution Process
130(2)
4.3.3 Investigation, Synthesis, and Analysis
132(2)
4.3.4 Design Evaluation
134(3)
4.3.5 Analysis
137(1)
4.3.6 Iterative Design Procedure
138(2)
4.3.7 Design Evolution
140(1)
4.3.8 Specification (Customer Needs)
140(1)
4.3.9 Secondary Needs
141(1)
4.3.10 Design Life Cycle
141(1)
4.3.11 Invention and Lateral Thinking
142(1)
4.4 Design Methods
143(7)
4.4.1 The Tools of Creativity
143(1)
4.4.2 Heuristic Redefinition
143(7)
4.5 Classic Brainstorming
150(6)
4.5.1 Definition
152(1)
4.5.2 Step 1: Identify the Appropriate Team
152(1)
4.5.3 Step 2: Convene the Team and Clarify the Topic and Ground Rules
153(1)
4.5.4 Step 3: Generate Ideas
153(3)
4.5.5 Step 4: Clarify Ideas and Conclude the Session
156(1)
4.6 Brain Writing 6-3-5
156(1)
4.7 Imaginary Brainstorming
157(1)
4.7.1 Tool Overview
157(1)
4.7.2 Example: Mini Cement Mixer
157(1)
4.8 Word-Picture Associations and Analogies
158(1)
4.9 Methods of Generating Associations and Analogies
159(4)
4.9.1 Random Words
159(1)
4.9.2 Pictures
160(1)
4.9.3 Biotechniques (Biomechanics)
160(3)
4.10 TILMAG
163(4)
4.10.1 Technique Operation
164(1)
4.10.2 TILMAG Matrix
165(1)
4.10.3 Example: Bed Lifting Device
165(1)
4.10.4 TILMAG Phase 1
165(1)
4.10.5 TILMAG Phase 2
166(1)
4.10.6 TILMAG Phase 3
166(1)
4.10.7 TILMAG Phase 4
166(1)
4.10.8 TILMAG Phase 5
166(1)
4.11 The Morphological Box
167(3)
4.11.1 Tool Overview
168(2)
4.12 Design and Planning Methods
170(10)
4.12.1 The Gantt Chart (Activity Sequence Chart)
170(1)
4.12.2 Network Planning (Critical Path Analysis)
170(4)
4.12.3 The Complete Planning Exercise (PERT)
174(1)
4.12.4 Case Study: Flywheel Energy Storage System
175(5)
References
180(1)
Chapter 5 Communication for Engineers 181(44)
5.1 Communication Overview
181(1)
5.2 Written Communication
182(5)
5.2.1 Accuracy
182(1)
5.2.2 Presentation
182(1)
5.2.3 Research
182(1)
5.2.4 Guidelines for Effective Writing
183(1)
5.2.5 Planning
183(1)
5.2.6 Report Structure
183(1)
5.2.7 Crafting an Interesting Narrative
183(1)
5.2.8 Graphics
184(1)
5.2.9 Brevity and Clarity
184(1)
5.2.10 Adapting the Writing Style to the Intended Audience
184(1)
5.2.11 Things to Avoid
185(1)
5.2.12 Rewriting and Proofreading
185(1)
5.2.13 Guidelines for Revising, Editing, and Proofreading
185(1)
5.2.14 Logs and Notebooks
186(1)
5.2.15 Memoranda, Business Letters, and E-mail
186(1)
5.3 Project Reports/Technical Reports
187(7)
5.3.1 General Approach to Project Reports
187(1)
5.3.2 Title
188(1)
5.3.3 Cover Sheet
188(1)
5.3.4 Contents Page
188(1)
5.3.5 Terms of Reference (Generally the Project Brief)
188(1)
5.3.6 Summary (Executive Summary or Abstract)
189(1)
5.3.7 Introduction
189(1)
5.3.8 Main Body of Text
190(1)
5.3.9 Conclusions and Recommendations
190(1)
5.3.10 Bibliography
191(1)
5.3.11 References
191(1)
5.3.12 Appendix
191(1)
5.3.13 Project Layout
191(3)
5.4 Academic Publishing (Technical or Journal Papers)
194(1)
5.5 Graphical Communications
194(6)
5.5.1 Sketches
195(1)
5.5.2 Layout Drawings
196(1)
5.5.3 3D Modeling
197(2)
5.5.4 Two-Dimensional Modeling
199(1)
5.6 General Drawing Application
200(20)
5.6.1 Drawing Practice Basics
201(9)
5.6.2 Other Information for Complete Drawings
210(3)
5.6.3 Drawings Checklist and Common Errors
213(1)
5.6.4 Drawings: Common Errors
214(2)
5.6.5 Allocation of Drawing Numbers
216(3)
5.6.6 Parts Lists
219(1)
5.7 The Client
220(3)
5.7.1 Large Institutions
220(1)
5.7.2 The Individual Client
221(1)
5.7.3 The Medium-sized Client
221(1)
5.7.4 Client Requirements
221(1)
5.7.5 The Client's Wishes
221(1)
5.7.6 Project Requirements
222(1)
5.7.7 Presentation of Designs
223(1)
5.7.8 Styles and Methods of Presentation
223(1)
References
223(2)
Chapter 6 Performance Prediction 225(60)
6.1 Why Performance Prediction Is Necessary
225(1)
6.2 Historical Aspects of Analysis
225(1)
6.3 Materials Testing
226(4)
6.3.1 Elastic Region
227(1)
6.3.2 Yield Point
228(1)
6.3.3 Ultimate Tensile Strength (UTS)
228(1)
6.3.4 Fracture Point
228(1)
6.3.5 Young's Modulus E
228(2)
6.4 Factor of Safety
230(1)
6.5 Consolidation of Safety in Structures and Devices
230(3)
6.6 Computing Power
233(2)
6.6.1 Design Iteration Supported by Computer-Aided Analysis
234(1)
6.7 Fatigue Strength Prediction
235(12)
6.7.1 Welded Joints
239(1)
6.7.2 Quantifying Fatigue Life
239(1)
6.7.3 S-N Curves (Goodman Curves)
240(5)
6.7.4 Stress Concentrations
245(2)
6.8 Performance Prediction Methodology and Application
247(9)
6.8.1 Computational Analysis Overview
248(1)
6.8.2 Basic Electronic Calculation Tools
249(1)
6.8.3 Advanced Computational Analytical Techniques
249(1)
6.8.4 Computational Analysis Potentials
250(1)
6.8.5 Examples of Practical Applications
250(6)
6.9 Checks and Balances
256(4)
6.9.1 Computer-Aided Failure (CAF)
256(1)
6.9.2 Stainless Steel Pipeline Junction (by Caroline Sumner, University of Huddersfield)
257(2)
6.9.3 CFD Analysis Verified by a Wind Tunnel Model (by Jay Medina, University of Huddersfield)
259(1)
6.10 Conclusion
260(2)
6.10.1 First Bottom Line
260(1)
6.10.2 Second Bottom Line
260(2)
6.10.3 Third Bottom Line
262(1)
Appendix
262(21)
A6.1 Stress in a Shaft Considering Stress Concentration Factors
262(3)
A6.2 Stress in Beams
265(4)
A6.3 Torsion in a Shaft
269(2)
A6.4 Dynamics of Solid Bodies/Mechanics: Bicycle Parameters
271(4)
A6.5 Inertias and Power Prediction
275(2)
A6.6 Dynamics: Vibration Isolation
277(2)
A6.7 Structural Design of the Denby Dale Pie Cooker
279(3)
A6.8 Heat Transfer
282(5)
Denby Dale Pie: Maximum Rate of Ingredients Addition
282(1)
References
283(2)
Chapter 7 Design for Total Control 285.
7.1 Traditional Approaches
285(1)
7.2 The Sustainability Umbrella Model
285(1)
7.3 Total Design Control
286(1)
7.4 A New Design Approach (The Umbrella of Sustainable Design)
287(4)
7.4.1 Sustainable Sourcing
288(1)
7.4.2 Recycled Materials
289(1)
7.4.3 Reduction of Haulage Dependence
290(1)
7.5 The Sustainable Design Function
291(20)
7.5.1 Optimization Strategy
294(1)
7.5.2 Strength
295(5)
7.5.3 Modularization
300(2)
7.5.4 Manufacturing
302(5)
7.5.5 Maintenance
307(2)
7.5.6 Usage
309(1)
7.5.7 Disposal
309(1)
7.5.8 Conclusions to the Sustainable Design Function
310(1)
7.6 Manufacturing
311(12)
7.6.1 Minimizing the Number of Parts
312(1)
7.6.2 Developing Modular Designs
312(1)
7.6.3 Multifunctional Parts
313(1)
7.6.4 Multiuse Parts
313(1)
7.6.5 Design Parts for Ease of Fabrication
314(1)
7.6.6 Reevaluation of Welds
315(3)
7.6.7 Assembly Methods: Conclusion
318(1)
7.6.8 Fastening Systems
318(1)
7.6.9 Minimize Assembly Directions
319(1)
7.6.10 Maximize Compliance
319(1)
7.6.11 Minimize Handling
320(1)
7.6.12 Design Constraints and Total Design Team Formation
320(3)
7.7 Lifetime Usage
323(4)
7.7.1 Case Study: Item of Plant: Water-Well Rock Drill
323(2)
7.7.2 Case Study: Steel Fabricated Footbridge
325(1)
7.7.3 Designer's Duty
326(1)
7.8 Maintenance
327(11)
7.8.1 Life of the Product
327(1)
7.8.2 Component Life Prediction
328(1)
7.8.3 Simplicity of Components and Standardization
329(1)
7.8.4 Accessibility for Ease of Removal of Components
329(1)
7.8.5 Downtime
329(1)
7.8.6 Detail Design for Quick-and-Easy Maintenance
330(1)
7.8.7 Maintenance Location
331(1)
7.8.8 Case study: Water-Well Rock Drill
332(1)
7.8.9 Modular Build
333(1)
7.8.10 Lubrication and Lubricant Delivery
334(1)
7.8.11 Lubricant Delivery Systems
335(2)
7.8.12 Engineering Plastics
337(1)
7.9 End-of-Life Disposal
338(5)
7.9.1 Reduce
339(1)
7.9.2 Reuse/Refurbish
340(1)
7.9.3 Recycle
341(1)
7.9.4 The Designer's Role
342(1)
7.9.5 Case Study: Reuse of Floor Panels
342(1)
References
343(1)
Bibliography
343(1)
Glossary
343(1)
Useful Addresses
344(1)
Chapter 8 Drivers of Sustainability in Design: Legislation and Perceptions of Consumers and Buyers 345(28)
8.1 Legislation
345(10)
8.1.1 The United States
346(1)
8.1.2 Canada
347(1)
8.1.3 Europe
347(2)
8.1.4 The United Kingdom
349(1)
8.1.5 Germany
349(3)
8.1.6 BRICS Nations
352(2)
8.1.7 Japan
354(1)
8.2 Effectiveness of International Environmental Regimes and Legislation
355(2)
8.3 Nonlegislative Measurement and Guidance Tools
357(8)
8.3.1 EIA: Environmental Impact Assessment
358(1)
8.3.2 Eco-Rucksack
358(3)
8.3.3 Carbon Footprint
361(1)
8.3.4 ECO-IT
362(1)
8.3.5 Granta
363(2)
8.4 Other Drivers of Sustainable Design
365(4)
8.4.1 Social Drivers
365(3)
8.4.2 Financial Drivers
368(1)
8.5 Conclusion
369(1)
Sources and References
369(4)
Chapter 9 Strategic Sustainable Design 373(24)
9.1 Triple Bottom Line-The 3P Approach
373(7)
9.1.1 What It Is and What It Does
373(2)
9.1.2 Measurement Systems for 3BL
375(2)
9.1.3 Are Manufacturing Companies Embracing the Triple Bottom Line?
377(1)
9.1.4 Case Study Example: Cascade Engineering Inc
378(1)
9.1.5 A Critical Review: Is It An Unacceptable, Sensible, or Imperative Measure of a Company's Success?
379(1)
9.2 Benefits to Producers and Buyers of Designed-in Sustainability
380(4)
9.2.1 Benefit to Buyers
380(3)
9.2.2 Benefit to Producers
383(1)
9.3 The Sustainability Measurement and Certification Industry
384(9)
9.3.1 ISO 14000 Series
387(1)
9.3.2 Carbon Neutral
387(1)
9.3.3 The Energy Star Label
388(1)
9.3.4 The Blue Angel (Blauer Engel)
388(1)
9.3.5 The EU Ecolabel
389(1)
9.3.6 The Carbon Reduction Label
389(1)
9.3.7 The Energy Saving Trust Recommended
389(1)
9.3.8 The Reviewers-Quis custodiet Ipsos Custodies?
390(3)
References and Information Sources
393(4)
Chapter 10 Predicting the Future 397(12)
10.1 Unsustainable Futures
397(5)
10.1.1 Challenging Views
397(1)
10.1.2 The Limits to Growth
398(1)
10.1.3 The Natural Market-Driving Sustainability
398(1)
10.1.4 The Third Way
399(2)
10.1.5 How the Viewpoints Collide: Example, the Milk Bottle
401(1)
10.2 The Engineers' View
402(1)
10.3 Conclusion
403(1)
10.4 If I Were You, I Wouldn't Be Starting from Here!
404(1)
10.4.1 We Can Only Move Forward
404(1)
10.4.2 The Benefit to the Environment
404(1)
10.4.3 The Benefit to the Consumer
404(1)
10.4.4 The Challenge of the Designer
405(1)
10.5 The Way Forward
405(1)
References and Information Sources
406(3)
Index 409
Anthony Johnson is an experienced Design Engineer and Educator responsible for Engineering Design in the Department of Engineering and Technology at the University of Huddersfield. He is also a U.K. Chartered Engineer (C. Eng) with the Institution of Mechanical Engineers. Professor Johnson is a prolific design consultant (with over 400 projects to date), educational consultant, and recent committee member with the British Standards Institute. Andy Gibson is the Managing Director of Segelocum Ltd, a customer-focused designed education consultancy firm. Andrew has worked in product development and customer liaison, moving on onto export sales and marketing and thence into the management of international subsidiaries of UK-based engineering companies. In recent years, Mr. Gibson has developed a consultancy-based business working with clients to penetrate new markets, focusing on sustainability relating to international trade training.