Atjaunināt sīkdatņu piekrišanu

E-grāmata: Sustainable Development Indicators: An Exergy-Based Approach

(Aalborg University, Copenhagen, Denmark)
  • Formāts - EPUB+DRM
  • Cena: 55,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Analyzing the self-sufficient Danish island of Samsų, this book explains sustainability through a bio-geophysical understanding of how to best use societys limited resources to achieve true sustainability. The method used derives from the thermodynamic function of exergy. By analyzing exergy flows and establishing a system for evaluating the energy and the materials used in a society, the author creates a platform for monitoring certain indicators of sustainability. These indicators inform readers about the actions that must be taken and the time frames for achieving sustainability goals. The exergy-based approach is an important tool for carrying out such an analysis because it



















Focuses on several key thermodynamic concepts and the usefulness of exergy analysis for evaluating sustainability













Explains sustainability by implementing thermodynamic laws to societal consumption and the use of resources













Discusses new methods that integrate energy and material fluxes and evaluates them against each other













Provides direct indicators for finding the largest problems/obstacles and deciding where measures should be taken













Includes instructions on how to establish an accounting system for evaluating the energy and the materials used in a society











This book is aimed for professionals, researchers, and students working on nature conservation and environmental management projects related to sustainability.
Foreword xv
Preface xix
Acknowledgements xxiii
Author xxv
Reading Instructions xxvii
1 Introduction to Sustainability and Work Energy Analysis
1(14)
1.1 Introduction to Sustainability Analysis
1(1)
1.2 The Sustainability Concept
2(2)
1.3 Sustainability---A Materialistic Definition
4(2)
1.3.1 Energy Perspectives
5(1)
1.3.2 Material Perspectives
6(1)
1.4 Integrating with Physics
6(1)
1.5 Thermodynamics and Society
7(2)
1.6 Work Energy (Exergy)
9(3)
1.7 Work Energy and Nature
12(3)
1.7.1 Work Energy of Nature as Chemistry
12(1)
1.7.2 Work Energy Including Information
13(2)
2 Work Energy and Sustainability
15(12)
2.1 Introduction to Work Energy
15(2)
2.2 Introducing Energy Forms to Everyday Life
17(2)
2.3 The Relevant Law(s)
19(2)
2.4 Work Energy Content and Transformation Rules
21(3)
2.5 Using Work Energy to Give Priorities
24(2)
2.6 Sub-Conclusions Work Energy and Sustainability
26(1)
3 Methodological Considerations
27(64)
3.1 Introduction to Methodology
27(4)
3.2 Basic Information on the Target of Study, Samso
31(6)
3.2.1 Samso and the CLC System
32(5)
3.3 Quantifying the Infrastructure
37(7)
3.3.1 The Urban Fabric vs. the Rural Zone
37(1)
3.3.2 Dividing the Infrastructure
37(1)
3.3.3 The Public Sector
38(1)
3.3.4 Private Sector
39(2)
3.3.5 Agricultural Sector
41(1)
3.3.6 The Industrial Sector
41(1)
3.3.7 Summary of the Distribution by Area of the Sectors
42(2)
3.4 Work Energy of Energy and Materials
44(6)
3.4.1 Work Energy of Energy and Matter
45(1)
3.4.2 Work Energy of Construction Materials and Houses
46(4)
3.4.3 Work Energy of Chemicals and Elements
50(1)
3.5 Other Elements of Methodology
50(4)
3.5.1 Geographical Issues and Landscape Perspective
51(3)
3.6 Work Energy Methods in the Sectors
54(32)
3.6.1 Energy Production and Consumption---Methodology
55(2)
3.6.1.1 Energy Production and Consumption
57(1)
3.6.1.2 Energy Stocks in the Energy Sector
58(1)
3.6.1.3 Energy Inflows to the Energy Sector
59(1)
3.6.1.4 Work Energy Outflows from the Energy Sector
59(1)
3.6.2 Public Societal Infrastructure and Methodology
60(1)
3.6.2.1 Public Infrastructure and Work Energies
61(1)
3.6.2.2 Stocks Work Energy of Public Infrastructure
61(1)
3.6.2.3 Inflows of Work Energy to Public Infrastructure
62(1)
3.6.2.4 Outflows of Work Energy from Public Infrastructure
63(1)
3.6.3 Private Households and Methodology
63(1)
3.6.3.1 Energy and Private Households
64(1)
3.6.3.2 Stocks of Work Energy in Private Households
64(1)
3.6.3.3 Inflows of Work Energy to Private Households
65(1)
3.6.3.4 Outflows of Work Energy from Private Households
66(1)
3.6.4 Agricultural Sector---Methodology
67(1)
3.6.4.1 Work Energy and Agricultural Crops
68(1)
3.6.4.2 Work Energy in Stocks of Agricultural Crops
68(1)
3.6.4.3 Inflows to Agricultural Crops
69(2)
3.6.4.4 Outflows from Agricultural Crops
71(1)
3.6.4.5 Livestock and Work Energy
72(1)
3.6.4.6 Livestock Stocks
73(1)
3.6.4.7 Livestock Inflows
74(1)
3.6.4.8 Livestock Outflows
75(1)
3.6.4.9 Forestry Crops and Work Energy
76(3)
3.6.4.10 Fisheries and Work Energy
79(1)
3.6.5 Industry, Trade and Commerce Sector and Methodology
80(1)
3.6.5.1 Work Energy of the Industry, Trade and Commerce Sector
80(1)
3.6.5.2 Stocks of Work Energy in Industry, Trade and Commerce Sector
81(1)
3.6.5.3 Inflows of Work Energy in Industry, Trade and Commerce Sector
81(1)
3.6.5.4 Outflows of Work Energy from Industry, Trade and Commerce Sector
82(1)
3.6.6 Nature---Evaluation and Methodology
83(1)
3.6.6.1 Work Energy Stock and Flows of Nature
83(1)
3.6.6.2 Work Energy Stock of Nature
84(1)
3.6.6.3 Work Energy Inflows to Nature
85(1)
3.6.6.4 Work Energy Outflows from Nature
85(1)
3.7 Waste Management and Methodology
86(2)
3.7.1 Waste Management and Energy
86(1)
3.7.1.1 Work Energy Stocks of Wastes
87(1)
3.7.1.2 Work Energy Inflows of Wastes
87(1)
3.7.1.3 Work Energy Outflows of Wastes
88(1)
3.8 Indices of Work Energy Efficiency of Society and Sectors
88(3)
3.8.1 Stock Indicator
89(1)
3.8.2 Renewability Indicator
89(1)
3.8.3 Output/Input Efficiency
90(1)
4 Analysis of the Energy Sector
91(10)
4.1 Work Energy of Energy Sector
91(1)
4.2 Energy Import and Production
92(1)
4.3 Energy Export and Consumption
93(1)
4.4 Sustainability Indicators
94(5)
4.4.1 Stock Indicator
95(1)
4.4.2 Renewability Indicator
95(2)
4.4.3 O/I Indicator
97(2)
4.5 Trends from 1997--2011
99(1)
4.6 Sub-Conclusions regarding the Energy Sector
100(1)
5 Work Energy Analysis of the Public Sector
101(8)
5.1 Introduction to Public-Sector Analysis
101(1)
5.2 Work Energy of the Public Sector (Stock)
102(1)
5.2.1 Renewable Energy-Bound Exergy Stocks (REBES_PUBL)
102(1)
5.2.2 Non-Renewable Energy-Bound Exergy Stocks (NEBES_PUBL)
102(1)
5.2.3 Renewable Matter-Bound Exergy Stocks (RMBES_PUBL)
102(1)
5.2.4 Non-Renewable Matter-Bound Exergy Stocks (NMBES_PUBL)
103(1)
5.3 Work Energy Inputs to the Public Sector
103(2)
5.3.1 Renewable Energy-Bound Exergy Inputs (REBEL_PUBL)
103(1)
5.3.2 Non-Renewable Energy-Bound Exergy Inputs (NEBEL_PUBL)
104(1)
5.3.3 Renewable Matter-Bound Exergy Inputs (RMBEI_PUBL)
105(1)
5.3.4 Non-Renewable Matter-Bound Exergy Inputs (NMBEI_PUBL)
105(1)
5.4 Work Energy Outputs from the Public Sector
105(1)
5.4.1 Renewable Energy Bound Exergy Outputs (REBEO_PUBL)
105(1)
5.4.2 Non-Renewable Energy-Bound Exergy Outputs (NEBEO_PUBL)
106(1)
5.4.3 Renewable Matter-Bound Exergy Outputs (RMBEO_PUBL)
106(1)
5.4.4 Non-Renewable Matter-Bound Exergy Outputs (NMBEO_PUBL)
106(1)
5.5 Work Energy Balance of the Public Sector
106(1)
5.6 Sustainability Indicators
106(2)
5.6.1 Stock Indicator
107(1)
5.6.2 Renewability Indicator
107(1)
5.6.3 O/I Indicator
107(1)
5.7 Sub-Conclusions regarding the Public
108(1)
6 Work Energy and Private Sector
109(6)
6.1 Work Energy and Private Households
109(1)
6.2 Work Energy Stocks in Private Households
110(1)
6.2.1 Renewable Energy-Bound Exergy Stocks (REBES_PRIV)
110(1)
6.2.2 Non-Renewable Energy-Bound Exergy Stocks (NEBES_PRIV)
110(1)
6.2.3 Renewable Matter-Bound Exergy Stocks (RMBES_PRIV)
110(1)
6.2.4 Non-Renewable Matter-Bound Exergy Stocks (NMBES_PRIV)
110(1)
6.3 Work Energy Inputs to Private Households
110(2)
6.3.1 Renewable Energy-Bound Exergy Inputs (REBEL_PRIV)
111(1)
6.3.2 Non-Renewable Energy-Bound Exergy Inputs (NEBEI_PRIV)
111(1)
6.3.3 Renewable Matter-Bound Exergy Inputs (RMBEI_PRIV)
111(1)
6.3.4 Non-Renewable Matter-Bound Exergy Inputs (NMBEI_PRIV)
111(1)
6.4 Work Energy Outputs from Private Households
112(1)
6.4.1 Renewable Energy-Bound Exergy Outputs (REBEO_PRIV)
112(1)
6.4.2 Non-Renewable Energy-Bound Exergy Outputs (NEBEO_PRIV)
112(1)
6.4.3 Renewable Matter-Bound Exergy Outputs (RMBEO_PRIV)
112(1)
6.4.4 Non-Renewable Matter-Bound Exergy Outputs (NMBEO_PRIV)
112(1)
6.5 Sustainability Indicators of Private Households
112(1)
6.5.1 Stock Indicator of Private Households
112(1)
6.5.2 Renewability Indicators of Private Households
113(1)
6.5.3 O/I Indicator of Private Households
113(1)
6.6 Sub-Conclusions regarding the Private Sector
113(2)
7 Work Energy Analysis of the Agriculture, Forestry and Fisheries Sector
115(18)
7.1 Introduction to Work Energy of the Agriculture and Related Sectors
115(1)
7.2 Work Energy and Crop Production
116(9)
7.2.1 Work Energy of Stocks in Crop Production
117(1)
7.2.1.1 Renewable Energy-Bound Work Energy of Stocks in Crop Production (REBES_CROP)
117(1)
7.2.1.2 Non-Renewable Energy-Bound Work Energy of Stocks in Crop Production (NEBES_CROP)
118(1)
7.2.1.3 Renewable Matter-Bound Work Energy of Stocks in Crop Production (RMBES_CROP)
118(1)
7.2.1.4 Non-Renewable Energy-Bound Work Energy of Stocks in Crop Production (NMBES_CROP)
118(1)
7.2.2 Work Energy Inputs to Crop Production
118(1)
7.2.2.1 Renewable Energy-Bound Work Energy of Inputs to Crop Production (REBEI_CROP)
118(1)
7.2.2.2 Non-Renewable Energy-Bound Work Energy of Inputs to Crop Production (NEBELCROP)
119(1)
7.2.2.3 Work Energy Input in Renewable Matter in Crop Production (RMBEI_CROP)
119(1)
7.2.2.4 Work Energy Input in Non-Renewable Matter in Crop Production (NMBEI_CROP)
120(1)
7.2.3 Work Energy Outputs in Matter from Crop Production
120(1)
7.2.3.1 Work Energy Output in Renewable Energy from Crop Production (REBEO_CROP)
120(1)
7.2.3.2 Work Energy Output in Non-Renewable Energy from Crop Production (NEBEO_CROP)
121(1)
7.2.3.3 Work Energy Output in Renewable Matter from Crop Production (RMBEO_CROP)
121(1)
7.2.3.4 Work Energy Output in Non-Renewable Matter from Crop Production (NMBEO_CROP)
122(1)
7.2.4 Work Energy Budget of Crop Production
123(1)
7.2.5 Sustainability Indicators of Crop Production
123(1)
7.2.5.1 Stock Indicator of Crop Production
123(1)
7.2.5.2 Renewability Indicators of Crop Production
124(1)
7.2.5.3 O/I Indicator of Crop Production
125(1)
7.3 Work Energy of Livestock Production
125(5)
7.3.1 Work Energy Stocks of Livestock Production
126(1)
7.3.1.1 Renewable Work Energies in Energy of Livestock Production (REBES_LIVE)
126(1)
7.3.1.2 Non-Renewable Work Energies in Energy of Livestock Production (NEBES_LIVE)
126(1)
7.3.1.3 Renewable Work Energies in Matter of Livestock Production (RMBES_LIVE)
127(1)
7.3.1.4 Non-Renewable Work Energies in Matter of Livestock Production (NMBES_LIVE)
127(1)
7.3.2 Work Energy Inputs of Livestock Production
127(1)
7.3.2.1 Work Energy Input in Renewable Energy in Livestock Production (REBEI_LIVE)
127(1)
7.3.2.2 Work Energy Input in Non-Renewable Energy in Livestock Production (NEBEI_LIVE)
127(1)
7.3.2.3 Work Energy Input in Renewable Matter in Livestock Production (RMBEI_LIVE)
128(1)
7.3.2.4 Work Energy Input in Non-Renewable Matter in Livestock Production (NMBEI_LIVE)
128(1)
7.3.3 Work Energy Outputs of Livestock Production
128(1)
7.3.3.1 Work Energy Output in Renewable Energy from Livestock Production (REBEO_LIVE)
129(1)
7.3.3.2 Work Energy Output in Non-Renewable Energy from Livestock Production (NEBEI_LIVE)
129(1)
7.3.3.3 Work Energy Output in Renewable Matter from Livestock Production (RMBEO_LIVE)
129(1)
7.3.3.4 Work Energy Output in Non-Renewable Matter from Livestock Production (NMBEO_LIVE)
129(1)
7.3.4 Sustainability Indicators of Livestock Production
129(1)
7.3.4.1 Stock Indicator of Livestock Production
129(1)
7.3.4.2 Renewability Indicator of Livestock Production
130(1)
7.3.4.3 O/I Indicator of Livestock Production
130(1)
7.4 Work Energy of Forestry
130(1)
7.5 Work Energy of Fishery
131(1)
7.6 Sub-Conclusions regarding Agriculture
131(2)
8 Work Energies of the Industry, Trade and Commerce Sector
133(8)
8.1 Introduction to the Industry, Commerce and Trade Sector
133(1)
8.2 Work Energy Stocks of the Industry, Commerce and Trade Sector (ICTS)
134(1)
8.2.1 Renewable Energy-Bound Exergy Stocks in ICTS (REBES_INDU)
135(1)
8.2.2 Non-Renewable Energy-Bound Exergy Stocks in ICTS (NEBES_INDU)
135(1)
8.2.3 Renewable Matter-Bound Exergy Stocks in ICTS (RMBES_INDU)
135(1)
8.2.4 Non-Renewable Matter-Bound Exergy Stocks in ICTS (NMBES_INDU)
135(1)
8.3 Work Energy Inputs of ICTS
135(1)
8.3.1 Renewable Energy-Bound Exergy Inputs to ICTS (REBEI_INDU)
136(1)
8.3.2 Non-Renewable Energy-Bound Exergy Inputs to ICTS (NEBEI_INDU)
136(1)
8.3.3 Renewable Matter-Bound Exergy Inputs to ICTS (RMBEI_INDU)
136(1)
8.3.4 Non-Renewable Matter-Bound Exergy Inputs to ICTS (NEBEI_INDU)
136(1)
8.4 Work Energy Outputs from ITCS
136(1)
8.4.1 Renewable Energy-Bound Exergy Outputs (REBEO_INDU)
137(1)
8.4.2 Non-Renewable Energy-Bound Exergy Outputs (NEBEI_INDU)
137(1)
8.4.3 Renewable Matter-Bound Exergy Outputs (RMBEO_INDU)
137(1)
8.4.4 Non-Renewable Matter-Bound Exergy Outputs (NMBEO_INDU)
137(1)
8.5 Work Energy of ICTS
137(1)
8.6 Sustainability Indicators of the ICTS
138(2)
8.6.1 Stock Indicator of the ICTS
139(1)
8.6.2 Renewability Indicators of the ICTS
139(1)
8.6.3 O/I Indicator of the ICTS
139(1)
8.7 Sub-Conclusions regarding Industry and More
140(1)
9 Work Energy Analysis of Nature
141(18)
9.1 Introduction to the Work Energy and Eco-Exergy of Nature
141(2)
9.2 Work Energy of Forests
143(1)
9.2.1 The Work Energy and Information of Forests
143(1)
9.2.2 Efficiency of the Forest Ecosystems
143(1)
9.3 Work Energy of Moors
143(2)
9.3.1 The Work Energy and Information of Moors
143(1)
9.3.2 Efficiency of the System
144(1)
9.4 Work Energy of Meadows
145(1)
9.4.1 The Work Energy and Information of Moors
145(1)
9.4.2 Efficiency of the Meadow Ecosystems
146(1)
9.5 Work Energy of Commons
146(2)
9.5.1 The Work Energy and Information of Commons
147(1)
9.5.2 Efficiency of the Commons Ecosystem
147(1)
9.6 Work Energy of Littoral Meadows
148(1)
9.6.1 The Work Energy and Information of Littoral Meadows
148(1)
9.6.2 Efficiency of the System
149(1)
9.7 Work Energy of Heathlands
149(1)
9.7.1 The Work Energy and Information of Heathlands
149(1)
9.7.2 Efficiency of the Heathland Ecosystem
149(1)
9.8 Work Energy of Lakes and Ponds
149(2)
9.8.1 The Work Energy and Information of Lakes and Ponds
150(1)
9.8.2 Efficiency of the Lake and Pond Ecosystems
151(1)
9.9 Work Energy of Streams
151(2)
9.9.1 The Work Energy and Information of Streams
152(1)
9.9.2 Efficiency of the Stream Ecosystems
153(1)
9.10 Work Energy of Boundary Zones
153(1)
9.10.1 The Work Energy and Information of Transitory Ecosystems
153(1)
9.10.2 Efficiency of the Stream Ecosystems
153(1)
9.11 Work Energy of Coastal Areas and Sea
154(1)
9.11.1 The Work Energy and Information of Coastal Areas and Sea
154(1)
9.11.2 Efficiency of the Coastal Area and Sea Ecosystem
154(1)
9.12 Comparison of Nature Types
154(2)
9.13 Comparing the Stock Indicators
156(2)
9.14 Sub-Conclusions regarding Nature
158(1)
10 Solid Waste---Estimating Amounts and Potentials
159(6)
10.1 Introduction to Waste Potentials
159(1)
10.2 Municipal Waste and Garbage
160(1)
10.3 Building Waste and Garbage
161(1)
10.4 Work Energy in Total Wastes
162(2)
10.5 Sub-Conclusions regarding Wastes
164(1)
11 Work Energy Budgets---Overview and Discussion
165(20)
11.1 Introduction to Discussion and Comparative Overview
165(1)
11.2 Overall Issues
166(1)
11.3 Issues Related to All Sectors
167(3)
11.3.1 Determining Geographical Extensions
167(1)
11.3.2 Buildings and Infrastructure
168(1)
11.3.3 Materials and Chemicals
168(1)
11.3.4 With Information?
169(1)
11.4 Specific Sector-Related Issues
170(5)
11.4.1 Energy-Sector Issues
170(1)
11.4.2 Public-Sector Issues
171(1)
11.4.3 Private-Sector Issues
171(1)
11.4.4 Agriculture-Sector Issues
172(1)
11.4.4.1 Crop-Sub-Sector Issues
172(1)
11.4.4.2 Livestock-Sub-Sector Issues
173(1)
11.4.4.3 Forestry- and Fisheries-Sub-Sector Issues
173(1)
11.4.5 Industry, Trade and Commerce Issues
174(1)
11.4.6 Nature-Sector Issues
174(1)
11.4.7 Waste-Sector Issues
175(1)
11.5 Comparison of Sectors
175(2)
11.5.1 Work Energies in Stocks
176(1)
11.5.2 Work Energies in Inputs
176(1)
11.5.3 Work Energies in Outputs
177(1)
11.6 Comparing Indicators
177(2)
11.7 Work Energy and Samsø in 2011
179(2)
11.8 A Scenario for 2020
181(2)
11.8.1 Supply-Side Considerations
181(1)
11.8.2 Output-Side Considerations
182(1)
11.9 Sub-Conclusions
183(2)
12 Conclusions and Perspectives
185(8)
12.1 Conclusions
185(1)
12.2 Method, Tool and Indicators
186(1)
12.3 Work Energy and Sustainability Strategy
186(1)
12.4 Society as Sectors
187(1)
12.5 Scale Dependency
188(1)
12.6 Data Availability
188(1)
12.7 Observations---General and Specific
189(1)
12.8 Suggested Implementation Scheme
190(3)
References 193(8)
Index 201
Sųren Nors Nielsen obtained the PhD in Structurally Dynamic Modelling in 1992, in the University of Copenhagen, and the "Agregaēćo" in 2009, in the University of Coimbra. He is a world expert on the application of thermodynamic methods for the analysis and assessment of biological systems functioning, mainly in aquatic environments, and of ecological modeling in environmental management. He authored or co-authored a large number of papers in peer review journals, book chapters and books.