Preface |
|
xxi | |
About the editor |
|
xxxiii | |
|
List of technical reviewers |
|
|
xxxv | |
|
List of additional reviewers |
|
|
xxxvii | |
Acknowledgements |
|
xxxix | |
|
1 Prototype generation based on MOPSO |
|
|
1 | (1) |
|
|
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (3) |
|
1.3 Particle swarm optimization and its application to prototype generation |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.3 PSO for prototype generation |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.4.1 Motivation of error rank |
|
|
9 | (1) |
|
1.4.2 Definition of error rank |
|
|
10 | (2) |
|
1.5 Multiobjective optimization strategy for learning |
|
|
12 | (2) |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.6.2 Comparison algorithms |
|
|
15 | (1) |
|
|
16 | (1) |
|
1.6.4 Experimental results |
|
|
17 | (7) |
|
1.6.5 Comparison with 28 prototype generation algorithms on the 59 datasets offered by Triguero et al. |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
26 | (5) |
|
2 Image reconstruction algorithms for electrical impedance tomography based on swarm intelligence |
|
|
31 | (1) |
|
Wellington Pinheiro dos Santos |
|
|
Ricardo Emmanuel de Souza |
|
|
|
Allan Rivalles Souza Feitosa |
|
|
Valter Augusto de Freitas Barbosa |
|
|
Victor Luiz Bezerra Araujo da Silva |
|
|
|
Rafaela Covello de Freitas |
|
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
2.3.1 Particle swarm optimization |
|
|
34 | (2) |
|
|
36 | (3) |
|
2.3.3 Artificial bee colony |
|
|
39 | (1) |
|
2.4 Application: electrical impedance tomography |
|
|
40 | (1) |
|
2.4.1 Mathematical modeling of EIT problems |
|
|
40 | (1) |
|
2.4.2 Direct and inverse problem |
|
|
41 | (1) |
|
2.4.3 EIT reconstruction method as an optimization problem |
|
|
42 | (2) |
|
2.4.4 Ground-truth images |
|
|
44 | (1) |
|
2.4.5 Computational solutions obtained from swarm techniques |
|
|
44 | (6) |
|
|
50 | (2) |
|
|
52 | (5) |
|
3 A semisupervised fuzzy GrowCut algorithm for segmenting masses of regions of interest of mammography images |
|
|
57 | (1) |
|
|
|
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (2) |
|
3.3 Materials and methods |
|
|
60 | (1) |
|
3.3.1 Fuzzy GrowCut model |
|
|
60 | (6) |
|
3.3.2 Automatic selection of seeds |
|
|
66 | (1) |
|
3.3.3 Adaptive selection of parameters |
|
|
67 | (1) |
|
|
68 | (1) |
|
3.3.5 Experimental environment |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
3.4.1 Fault tolerance analysis |
|
|
72 | (2) |
|
|
74 | (6) |
|
|
80 | (1) |
|
|
81 | (4) |
|
4 Multiobjective optimization of autonomous control for a biped robot |
|
|
85 | (1) |
|
|
|
|
|
85 | (1) |
|
|
85 | (2) |
|
4.2 Optimization algorithm |
|
|
87 | (1) |
|
4.2.1 Particle swarm optimization |
|
|
87 | (1) |
|
4.2.2 Convergence operator |
|
|
87 | (1) |
|
4.2.3 Divergence operator |
|
|
88 | (1) |
|
4.2.4 Combination of PSO, convergence, and divergence operators |
|
|
88 | (1) |
|
4.2.5 Multiobjective procedure |
|
|
89 | (1) |
|
|
90 | (2) |
|
4.3.1 Dynamic model and inverse kinematic |
|
|
92 | (4) |
|
4.3.2 Proportional--derivative control |
|
|
96 | (2) |
|
4.4 Multiobjective optimal control of the biped robot |
|
|
98 | (7) |
|
|
105 | (1) |
|
|
105 | (4) |
|
5 Swarm intelligence based MIMO detection techniques in wireless systems |
|
|
109 | (1) |
|
|
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
5.4 Existing MIMO detectors |
|
|
112 | (1) |
|
|
112 | (1) |
|
5.4.2 Nonlinear detectors |
|
|
113 | (1) |
|
5.5 Nature-inspired optimization techniques |
|
|
114 | (1) |
|
|
114 | (1) |
|
5.5.2 Particle swarm optimization |
|
|
114 | (1) |
|
5.5.3 Ant colony optimization |
|
|
114 | (2) |
|
5.6 Genetic algorithm based detection for MIMO techniques |
|
|
116 | (1) |
|
5.6.1 Initialization of GA |
|
|
116 | (1) |
|
5.6.2 Fitness evaluation using cost function |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (1) |
|
5.6.9 Performance analysis |
|
|
118 | (2) |
|
5.7 MIMO detection using particle swarm optimization |
|
|
120 | (1) |
|
5.7.1 PSO-MI MO detection algorithm |
|
|
120 | (1) |
|
5.7.2 SPSO-MIMO detection algorithm |
|
|
121 | (1) |
|
5.7.3 MPSO-MIMO detection algorithm |
|
|
122 | (1) |
|
5.7.4 MIMO detection algorithm based on binary PSO (BPSO-MIMO) |
|
|
122 | (1) |
|
5.7.5 Control of PSO parameters |
|
|
123 | (1) |
|
5.7.6 Performance analysis of PSO-based MIMO detection techniques |
|
|
123 | (1) |
|
5.7.7 MIMO-PSO detection algorithms' BER performance |
|
|
123 | (5) |
|
5.7.8 Behavior with increase in iterations |
|
|
128 | (1) |
|
5.7.9 Effect of parameters adjustment in system behavior |
|
|
128 | (1) |
|
5.7.10 Analysis of MIMO-PSO as an effective MIMO detector |
|
|
128 | (1) |
|
5.8 MIMO detection using ant colony optimization (ACO) algorithm |
|
|
129 | (1) |
|
|
130 | (1) |
|
5.8.2 BA-MIMO detection algorithm |
|
|
131 | (1) |
|
5.8.3 Performance evaluation of BA-MIMO detection |
|
|
131 | (2) |
|
5.8.4 Computational complexity comparison |
|
|
133 | (1) |
|
5.8.5 Performance complexity trade-off |
|
|
134 | (1) |
|
5.9 Applications of SI in MIMO detection |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
135 | (4) |
|
6 Swarm intelligence in logistics and production planning |
|
|
139 | (1) |
|
|
|
|
|
139 | (1) |
|
|
139 | (2) |
|
6.2 A brief overview of metaheuristics and swarm intelligence |
|
|
141 | (1) |
|
6.2.1 Categorization of metaheuristics |
|
|
141 | (2) |
|
6.2.2 Swarm algorithms and optimization problems |
|
|
143 | (1) |
|
6.2.3 Some selected swarm algorithms |
|
|
144 | (4) |
|
6.3 Optimization problems in production and logistics |
|
|
148 | (1) |
|
6.3.1 Economic order quantities and lot sizes |
|
|
148 | (3) |
|
6.3.2 Scheduling problems |
|
|
151 | (3) |
|
6.3.3 Vehicle routing problems |
|
|
154 | (5) |
|
|
159 | (2) |
|
|
161 | (6) |
|
7 Swarm intelligence for object-based image analysis |
|
|
167 | (1) |
|
|
|
167 | (1) |
|
|
168 | (1) |
|
7.2 Object-based image analysis |
|
|
169 | (2) |
|
|
171 | (1) |
|
|
171 | (1) |
|
7.2.3 Structural features |
|
|
172 | (1) |
|
7.2.4 Contextual features |
|
|
173 | (1) |
|
7.3 Optimum feature/parameter selection |
|
|
174 | (1) |
|
7.4 Optimization algorithm |
|
|
174 | (5) |
|
7.4.1 Ant colony optimization |
|
|
175 | (1) |
|
7.4.2 Particle swarm optimization |
|
|
176 | (1) |
|
7.4.3 Firefly swarm optimization |
|
|
177 | (2) |
|
7.5 Optimum feature selection based on swarm intelligence |
|
|
179 | (1) |
|
7.6 Experimental results of swarm-based optimum feature selection |
|
|
180 | (6) |
|
|
180 | (2) |
|
7.6.2 Evaluation function and accuracy assessment |
|
|
182 | (4) |
|
|
186 | (1) |
|
|
186 | (3) |
|
8 Evolutionary multiobjective optimization for multilabel learning |
|
|
189 | (1) |
|
|
|
189 | (1) |
|
8.1 Multiobjective multilabel classification |
|
|
189 | (1) |
|
|
189 | (3) |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (6) |
|
|
200 | (5) |
|
8.2 Multilabel ensemble learning |
|
|
205 | (1) |
|
|
205 | (2) |
|
|
207 | (3) |
|
|
210 | (6) |
|
|
216 | (1) |
|
|
216 | (3) |
|
9 Image segmentation by flocking-like particle dynamics |
|
|
219 | (1) |
|
|
|
|
|
|
219 | (1) |
|
|
219 | (2) |
|
|
221 | (1) |
|
|
222 | (2) |
|
|
224 | (1) |
|
9.4.1 Overview of achievable results |
|
|
224 | (2) |
|
|
226 | (9) |
|
9.4.3 Comparative results |
|
|
235 | (6) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (3) |
|
10 Swarm intelligence for controller tuning and control of fractional systems |
|
|
245 | (1) |
|
|
|
|
245 | (1) |
|
|
245 | (3) |
|
10.2 Swarm-based optimization algorithms |
|
|
248 | (1) |
|
10.3 Particle swarm optimization |
|
|
248 | (2) |
|
10.4 Artificial bee colony |
|
|
250 | (3) |
|
10.5 Cuckoo search algorithm |
|
|
253 | (2) |
|
10.6 Ant colony optimization algorithm |
|
|
255 | (2) |
|
10.7 Fractional calculus and fractional order PID controller |
|
|
257 | (3) |
|
10.8 Simulation results and discussion |
|
|
260 | (2) |
|
10.9 Case study 1: lag-dominated FOS |
|
|
262 | (5) |
|
10.10 Case study 2: delay-dominated FOS |
|
|
267 | (5) |
|
10.11 Case study 3: high-order complex delay FOS |
|
|
272 | (4) |
|
|
276 | (1) |
|
|
277 | (6) |
|
11 PSO-based implementation of smart antennas for secure localisation |
|
|
283 | (1) |
|
|
|
|
|
|
283 | (1) |
|
|
283 | (2) |
|
|
285 | (2) |
|
11.3 Overview of the proposed scheme |
|
|
287 | (1) |
|
11.3.1 Security challenges in wireless localisation system |
|
|
287 | (1) |
|
11.3.2 Smart antennas preliminaries |
|
|
288 | (2) |
|
11.3.3 PSO algorithm outline |
|
|
290 | (1) |
|
11.3.4 PSO-based smart antenna design methodology |
|
|
291 | (13) |
|
11.4 Hardware realisation of smart antennas |
|
|
304 | (1) |
|
11.4.1 PCB fabrication of the optimised patch antenna |
|
|
304 | (1) |
|
11.4.2 Implementation of adaptive beamformer on FPGA devices |
|
|
305 | (3) |
|
11.5 System performance analysis |
|
|
308 | (1) |
|
11.5.1 Simulation and measurement on optimised patch antenna |
|
|
308 | (6) |
|
11.5.2 Simulation and experimentation on adaptive beamformer |
|
|
314 | (8) |
|
11.6 Conclusions and future scope |
|
|
322 | (1) |
|
|
323 | (4) |
|
12 Evolutionary computation for NLP tasks |
|
|
327 | (1) |
|
|
|
|
327 | (1) |
|
|
327 | (1) |
|
|
328 | (2) |
|
12.3 Evolutionary computation |
|
|
330 | (6) |
|
12.4 Evolutionary algorithms |
|
|
336 | (1) |
|
12.4.1 Genetic algorithms |
|
|
337 | (1) |
|
12.4.2 Evolutionary strategies |
|
|
337 | (2) |
|
12.4.3 Evolutionary programming |
|
|
339 | (1) |
|
12.4.4 Genetic programming |
|
|
339 | (1) |
|
|
340 | (1) |
|
12.5.1 Particle swarm optimisation |
|
|
341 | (1) |
|
12.5.2 Ant colony optimisation |
|
|
342 | (1) |
|
12.6 Evolutionary computation in natural language processing tasks |
|
|
343 | (1) |
|
|
343 | (1) |
|
12.6.2 Part-of-speech tagging |
|
|
344 | (9) |
|
12.6.3 Syntactic sentence analysis |
|
|
353 | (6) |
|
12.6.4 Grammar generation |
|
|
359 | (3) |
|
12.7 Final considerations |
|
|
362 | (1) |
|
|
363 | (6) |
|
13 Particle swarm optimisation for antenna element design |
|
|
369 | (1) |
|
|
|
|
|
369 | (1) |
|
|
369 | (1) |
|
13.2 Particle swarm optimisation |
|
|
370 | (1) |
|
13.2.1 Real-number particle swarm optimisation |
|
|
371 | (2) |
|
13.2.2 Binary particle swarm optimisation |
|
|
373 | (3) |
|
13.2.3 Hybrid real-binary particle swarm optimisation |
|
|
376 | (1) |
|
13.3 The application of particle swarm optimisation to antenna element design |
|
|
377 | (5) |
|
13.3.1 Parameterisation and coding |
|
|
378 | (1) |
|
13.3.2 Antenna element characteristics |
|
|
379 | (2) |
|
13.3.3 Fitness function and mechanism of optimisation |
|
|
381 | (1) |
|
13.4 Examples of horn antenna designs optimised using particle swarm optimisation |
|
|
382 | (1) |
|
13.4.1 Practical horn antenna design |
|
|
383 | (1) |
|
13.4.2 Motivation for optimisation |
|
|
384 | (3) |
|
13.4.3 Design of horn antennas optimised using particle swarm optimisation |
|
|
387 | (6) |
|
13.5 Example of a microstrip antenna design optimised using particle swarm optimisation |
|
|
393 | (1) |
|
13.5.1 Practical microstrip antenna design |
|
|
393 | (1) |
|
13.5.2 Motivation for optimisation |
|
|
393 | (3) |
|
13.5.3 Design of a microstrip antenna optimised using particle swarm optimisation |
|
|
396 | (4) |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
400 | (3) |
|
14 Swarm intelligence for data mining classification tasks: an experimental study using medical decision problems |
|
|
403 | (1) |
|
|
|
|
403 | (1) |
|
|
403 | (2) |
|
14.2 Using rules for classification tasks |
|
|
405 | (1) |
|
14.2.1 Classification and rules: basic concepts |
|
|
405 | (1) |
|
14.2.2 Creating rules by swarm intelligence optimization |
|
|
406 | (2) |
|
14.3 Particle swarm optimization in classifier building |
|
|
408 | (2) |
|
14.3.1 PSO algorithm to generate classification rules |
|
|
410 | (3) |
|
14.4 Ant colony optimization for classifier building |
|
|
413 | (3) |
|
14.4.1 ACO algorithm to generate classification rules |
|
|
416 | (1) |
|
14.5 Extracting classification rules from medical problems with swarm intelligence methods |
|
|
417 | (1) |
|
14.5.1 Medical decision support systems |
|
|
418 | (1) |
|
|
419 | (1) |
|
14.5.3 Experimentation and analysis of results |
|
|
420 | (4) |
|
|
424 | (1) |
|
|
424 | (1) |
|
|
425 | (4) |
|
15 Towards spiking neural systems synthesis |
|
|
429 | (1) |
|
|
|
|
|
429 | (1) |
|
|
429 | (2) |
|
|
431 | (1) |
|
15.3 ABSYNTH architecture and nonlinear circuit synthesis |
|
|
432 | (3) |
|
15.4 Neuromorphic spiking circuits and systems |
|
|
435 | (1) |
|
15.4.1 Sensor-to-spike-to-digital-converter |
|
|
435 | (1) |
|
15.4.2 Cost function design |
|
|
436 | (6) |
|
15.5 Optimization algorithms |
|
|
442 | (4) |
|
15.6 Experiments and results |
|
|
446 | (1) |
|
|
447 | (7) |
|
15.7 Statistical analysis |
|
|
454 | (1) |
|
15.7.1 Design centering (DC) for adaptive circuits |
|
|
454 | (4) |
|
15.7.2 Design centering (DC) for evolvable hardware |
|
|
458 | (1) |
|
|
458 | (1) |
|
|
459 | (4) |
|
16 Particle swarm optimization based memetic algorithms framework for scheduling of central planned and distributed flow shops |
|
|
463 | (1) |
|
|
|
|
|
|
|
|
|
|
463 | (1) |
|
|
464 | (1) |
|
|
465 | (1) |
|
16.2.1 Permutation flowshop scheduling problems |
|
|
465 | (1) |
|
16.2.2 Particle swarm optimization |
|
|
466 | (1) |
|
|
467 | (1) |
|
16.3 Permutation flowshop scheduling problem |
|
|
468 | (1) |
|
16.4 A unified particle swarm optimization-based memetic algorithms framework for scheduling |
|
|
469 | (1) |
|
16.4.1 Solution representation and evaluation |
|
|
469 | (1) |
|
16.4.2 Population initialization |
|
|
470 | (1) |
|
16.4.3 PSO-based global search |
|
|
471 | (1) |
|
16.4.4 Local search techniques |
|
|
471 | (4) |
|
16.5 Numerical test and comparisons |
|
|
475 | (1) |
|
16.5.1 Experimental setup |
|
|
475 | (1) |
|
16.5.2 Simulation and comparisons |
|
|
475 | (4) |
|
16.6 PSO-based MA for no-wait distributed assembly permutation flowshop problem |
|
|
479 | (1) |
|
16.6.1 Distributed assembly permutation flowshop problem with no-wait constraint |
|
|
479 | (2) |
|
16.6.2 PSO-based MA for DAPFSP-NW |
|
|
481 | (2) |
|
16.6.3 Experimental study |
|
|
483 | (2) |
|
16.7 PSO-based MA for stochastic distributed assembly permutation flowshop problem |
|
|
485 | (3) |
|
16.7.1 Stochastic DAPFSP-NW |
|
|
485 | (1) |
|
16.7.2 PM-HT for stochastic DAPFSP-NW |
|
|
485 | (2) |
|
16.7.3 Experimental study |
|
|
487 | (1) |
|
|
488 | (1) |
|
|
489 | (1) |
|
|
489 | (6) |
|
17 Particle swarm optimization for antenna array synthesis, diagnosis and healing |
|
|
495 | (1) |
|
|
|
|
495 | (1) |
|
|
495 | (3) |
|
|
498 | (1) |
|
|
498 | (1) |
|
17.2.2 N-element linear array |
|
|
498 | (3) |
|
|
501 | (4) |
|
|
505 | (1) |
|
17.5 Array pattern synthesis using PSO |
|
|
506 | (1) |
|
17.5.1 Problem formulation and implementation |
|
|
506 | (5) |
|
|
511 | (1) |
|
17.6 Diagnosis of the failed array using PSO |
|
|
512 | (1) |
|
17.6.1 Problem formulation and implementation |
|
|
513 | (4) |
|
|
517 | (1) |
|
17.7 Healing of the failed array in PSO |
|
|
517 | (1) |
|
17.7.1 Problem formulation and implementation |
|
|
517 | (5) |
|
|
522 | (5) |
|
|
527 | (1) |
|
|
527 | (1) |
|
|
527 | (4) |
|
18 Designing a fuzzy logic controller with particle swarm optimisation algorithm |
|
|
531 | (1) |
|
|
|
|
|
531 | (1) |
|
18.1 TRIG A Mark-H reactor |
|
|
531 | (2) |
|
|
533 | (1) |
|
18.2 Particle swarm optimisation |
|
|
534 | (1) |
|
18.2.1 Basic PSO algorithm |
|
|
535 | (2) |
|
18.3 Fuzzy logic controller |
|
|
537 | (1) |
|
|
537 | (1) |
|
|
538 | (1) |
|
|
538 | (1) |
|
18.4.2 Designed fuzzy controller (TTFLC) |
|
|
539 | (2) |
|
18.4.3 Coding the controller parameters for the PSO algorithm |
|
|
541 | (1) |
|
18.4.4 Determining limit values of FLC parameters |
|
|
541 | (1) |
|
18.4.5 PSO algorithm parameters |
|
|
542 | (2) |
|
18.4.6 PSO-TTFLC simulator's graphical user interface (GUI) |
|
|
544 | (2) |
|
18.5 Controller performance results |
|
|
546 | (1) |
|
18.5.1 Effect of initial power levels |
|
|
546 | (1) |
|
18.5.2 Effect of desired power levels |
|
|
546 | (2) |
|
18.5.3 Effect of period values |
|
|
548 | (1) |
|
18.5.4 Effect of reactivity imports |
|
|
549 | (2) |
|
18.5.5 Effect of transitive trajectory |
|
|
551 | (2) |
|
|
553 | (1) |
|
|
554 | (3) |
|
19 Adding swarm intelligence for slope stability analysis |
|
|
557 | (1) |
|
|
|
|
557 | (1) |
|
19.1 Introduction and chapter outline |
|
|
557 | (1) |
|
19.2 Review of literature |
|
|
558 | (1) |
|
19.2.1 Combination of PSO and slope stability analysis |
|
|
559 | (1) |
|
19.2.2 Application of laser scanning |
|
|
560 | (1) |
|
19.3 Research method and analysis framework |
|
|
561 | (1) |
|
|
561 | (2) |
|
19.3.2 Developing scripts |
|
|
563 | (1) |
|
19.4 Examples of analysis |
|
|
563 | (1) |
|
19.4.1 Theoretical soil profile |
|
|
563 | (6) |
|
19.4.2 Soil profile of a real landslide |
|
|
569 | (8) |
|
19.5 Summary and conclusion |
|
|
577 | (1) |
|
|
578 | (3) |
|
20 Software module clustering using particle swarm optimization |
|
|
581 | (1) |
|
|
|
|
581 | (1) |
|
|
581 | (2) |
|
|
583 | (3) |
|
20.3 Clustering algorithms for SMCPs |
|
|
586 | (1) |
|
20.3.1 GA-based software module clustering |
|
|
586 | (1) |
|
20.3.2 HC-based software module clustering |
|
|
587 | (1) |
|
20.3.3 SA-based software module clustering |
|
|
587 | (1) |
|
20.3.4 Particle swarm optimization |
|
|
588 | (1) |
|
|
589 | (1) |
|
|
590 | (2) |
|
20.4.2 Particle representation and initialization |
|
|
592 | (1) |
|
20.4.3 Particle fitness function |
|
|
592 | (1) |
|
20.4.4 Particle status updating rules |
|
|
592 | (1) |
|
|
593 | (1) |
|
20.5.1 Collecting results |
|
|
593 | (4) |
|
20.6 Conclusions and future works |
|
|
597 | (1) |
|
|
598 | (5) |
|
21 A swarm intelligence approach to harness maximum techno-commercial benefits from smart power grids |
|
|
603 | (1) |
|
|
|
|
603 | (1) |
|
21.1 Evolution of vertically integrated power system to deregulated structure and smart power grids |
|
|
603 | (3) |
|
21.1.1 Paradigm shift in power system optimization methods |
|
|
606 | (4) |
|
21.2 Resources and components of deregulated power systems and smart power grids |
|
|
610 | (1) |
|
|
610 | (1) |
|
21.2.2 Flexibility in network topology |
|
|
611 | (1) |
|
|
611 | (1) |
|
21.2.4 Load adjustment/load balancing |
|
|
612 | (1) |
|
|
612 | (1) |
|
|
612 | (1) |
|
|
613 | (1) |
|
21.2.8 Demand response support |
|
|
613 | (1) |
|
21.3 Market structure in smart grid |
|
|
614 | (1) |
|
21.4 Modeling and computer simulation of smart grid |
|
|
615 | (1) |
|
21.4.1 The state variables in smart grid infrastructure |
|
|
615 | (2) |
|
21.5 The social welfare optimization problem |
|
|
617 | (1) |
|
21.5.1 Social welfare optimization---Indian scenario |
|
|
617 | (1) |
|
21.5.2 Social welfare optimization---international scenario |
|
|
617 | (1) |
|
21.6 Application of stochastic optimization algorithms in power system optimization problems |
|
|
618 | (5) |
|
21.6.1 Classical optimization technique |
|
|
619 | (1) |
|
21.6.2 Particle swarm optimization technique |
|
|
620 | (3) |
|
21.6.3 Application of stochastic optimization algorithms on system model |
|
|
623 | (1) |
|
21.7 Development of swarm intelligence based social welfare optimization algorithm |
|
|
623 | (1) |
|
21.7.1 Development of the objective function |
|
|
624 | (1) |
|
21.7.2 A novel load curtailment strategy |
|
|
624 | (1) |
|
21.7.3 Operational constraints |
|
|
625 | (1) |
|
21.7.4 The price equilibrium problem |
|
|
626 | (1) |
|
21.7.5 Description of the methodology |
|
|
626 | (1) |
|
21.7.6 Illustrative case studies and comparison with traditional optimization algorithms |
|
|
627 | (1) |
|
|
627 | (3) |
|
21.7.8 Performance evaluation of the developed algorithm with intermittent renewable energy sources |
|
|
630 | (3) |
|
21.8 Summary and conclusions |
|
|
633 | (1) |
|
|
634 | (5) |
|
22 Fuzzy adaptive tuning of a particle swarm optimization algorithm for variable-strength combinatorial test suite generation |
|
|
639 | (1) |
|
|
|
|
|
|
639 | (1) |
|
|
640 | (1) |
|
22.2 Combinatorial interaction testing |
|
|
641 | (1) |
|
|
641 | (1) |
|
22.2.2 Motivating example |
|
|
642 | (2) |
|
|
644 | (2) |
|
22.4 PSO performance monitoring |
|
|
646 | (1) |
|
|
647 | (1) |
|
22.5.1 Fuzzy adaptive swarm VS-CIT |
|
|
647 | (3) |
|
22.5.2 The pair generation algorithm |
|
|
650 | (3) |
|
22.6 Empirical evaluation |
|
|
653 | (1) |
|
|
654 | (4) |
|
|
658 | (1) |
|
|
659 | (4) |
|
23 Multiobjective swarm optimization for operation planning of electric power systems |
|
|
663 | (1) |
|
|
|
|
|
663 | (1) |
|
|
663 | (2) |
|
|
665 | (1) |
|
23.3 Optimal power flow and static security analysis |
|
|
666 | (1) |
|
23.3.1 Formulation of the problem |
|
|
667 | (1) |
|
23.3.2 Security constrained optimal power flow |
|
|
668 | (1) |
|
23.3.3 Formulation of the SCOPF problem |
|
|
669 | (1) |
|
23.4 Multiobjective optimization |
|
|
670 | (1) |
|
23.4.1 Pareto-optimal solutions |
|
|
671 | (1) |
|
23.4.2 Goals in multiobjective optimization |
|
|
672 | (1) |
|
23.4.3 Differences in the monoobjective optimization |
|
|
673 | (1) |
|
23.5 Multiobjective swarm and evolutionary optimization |
|
|
673 | (1) |
|
23.5.1 Non-dominated sorting genetic algorithm |
|
|
674 | (3) |
|
23.5.2 Multiobjective evolutionary particle swarm optmization |
|
|
677 | (2) |
|
|
679 | (1) |
|
23.6.1 Mathematical modeling |
|
|
680 | (2) |
|
23.6.2 Algorithms implemented for SCOPF resolution |
|
|
682 | (3) |
|
23.7 Tests and simulation |
|
|
685 | (3) |
|
23.7.1 Chromosome encoding |
|
|
688 | (1) |
|
|
688 | (12) |
|
|
700 | (1) |
|
|
701 | (4) |
|
24 Perturbed-attractor particle swarm optimization for image restoration |
|
|
705 | (1) |
|
|
|
|
|
|
705 | (1) |
|
|
705 | (1) |
|
|
706 | (1) |
|
24.3 Perturbed-attractor PSO for image restoration |
|
|
707 | (5) |
|
24.4 Restoration quality metrics |
|
|
712 | (3) |
|
24.4.1 Edge sharpness metric |
|
|
713 | (1) |
|
24.4.2 Image fidelity: mutual information |
|
|
714 | (1) |
|
24.4.3 Image fidelity: VIF metric |
|
|
715 | (1) |
|
|
715 | (6) |
|
|
721 | (2) |
|
|
723 | (1) |
|
|
723 | (1) |
|
|
723 | (2) |
|
25 Application of swarm intelligence algorithms to multi-objective distributed local area network topology design problem |
|
|
725 | (1) |
|
|
|
|
725 | (1) |
|
|
725 | (1) |
|
25.2 Multi-objective optimization |
|
|
726 | (1) |
|
25.3 Approaches for handling multiple objectives |
|
|
727 | (1) |
|
25.4 Brief overview of ant colony optimization, particle swarm optimization, and artificial bee colony algorithms |
|
|
728 | (1) |
|
25.4.1 Ant colony optimization |
|
|
728 | (1) |
|
25.4.2 Particle swarm optimization |
|
|
729 | (1) |
|
25.4.3 Artificial bee colony |
|
|
730 | (1) |
|
25.5 Distributed local area network topology design problem |
|
|
731 | (1) |
|
|
731 | (2) |
|
|
733 | (1) |
|
25.6 Goal programming approach for the DLAN topology design problem |
|
|
733 | (4) |
|
25.6.1 Defining the goals |
|
|
734 | (1) |
|
25.6.2 Calculation of membership functions |
|
|
734 | (2) |
|
25.6.3 Calculation of deviational variables |
|
|
736 | (1) |
|
25.6.4 Formulation of the fitness function |
|
|
736 | (1) |
|
25.7 Swarm intelligence algorithms for DLAN topology design problem |
|
|
737 | (1) |
|
25.7.1 Solution structure |
|
|
737 | (1) |
|
25.7.2 Goal programming based ant colony optimization algorithm |
|
|
738 | (1) |
|
25.7.3 Goal programming based particle swarm optimization algorithm |
|
|
739 | (2) |
|
25.7.4 Goal programming based artificial bee colony algorithm |
|
|
741 | (3) |
|
25.7.5 Evolutionary artificial bee colony optimization |
|
|
744 | (2) |
|
25.8 Results and discussion |
|
|
746 | (3) |
|
|
749 | (1) |
|
|
749 | (1) |
|
|
749 | (6) |
|
26 Swarm intelligence algorithms for antenna design and wireless communications |
|
|
755 | (1) |
|
|
|
755 | (1) |
|
|
755 | (1) |
|
26.2 Swarm intelligence algorithms |
|
|
756 | (1) |
|
|
756 | (1) |
|
26.2.2 Inertia weight particle swarm optimization |
|
|
757 | (1) |
|
26.2.3 Constriction factor particle swarm optimization |
|
|
758 | (1) |
|
26.2.4 Comprehensive learning particle swarm optimizer |
|
|
758 | (1) |
|
26.2.5 PSO for discrete-valued problems |
|
|
759 | (2) |
|
26.2.6 Artificial bee colony algorithm |
|
|
761 | (1) |
|
|
762 | (1) |
|
26.2.8 Ant colony optimization |
|
|
762 | (1) |
|
26.3 Applications, numerical examples |
|
|
763 | (2) |
|
26.3.1 Linear antenna array synthesis with sidelobe level suppression and null control |
|
|
765 | (5) |
|
26.3.2 Thinned array design |
|
|
770 | (4) |
|
26.3.3 PAPR reduction of OFDM signals |
|
|
774 | (6) |
|
|
780 | (1) |
|
|
780 | (5) |
|
27 Finite-element model updating using swarm intelligence algorithms |
|
|
785 | (1) |
|
|
Fernando Buarque de Lima Neto |
|
|
|
|
|
785 | (1) |
|
|
785 | (2) |
|
27.2 Finite-element method |
|
|
787 | (2) |
|
27.3 Finite-element model updating methods |
|
|
789 | (1) |
|
27.4 The objective function |
|
|
790 | (1) |
|
27.5 Particle swarm optimization |
|
|
791 | (1) |
|
27.5.1 Updating a numerical example using PSO algorithm |
|
|
792 | (2) |
|
27.6 The ant colony optimization (ACO) algorithm for continuous domain |
|
|
794 | (2) |
|
27.6.1 Updating a numerical example using ACO algorithm |
|
|
796 | (1) |
|
|
797 | (3) |
|
27.7.1 Updating a numerical example using the FSS algorithm |
|
|
800 | (1) |
|
27.8 The unsymmetrical H-shaped structure |
|
|
801 | (5) |
|
27.8.1 Simulation settings |
|
|
802 | (1) |
|
27.8.2 The updating results for the unsymmetrical H-shaped structure |
|
|
803 | (3) |
|
27.9 Finite-element model updating using a multiobjective PSO algorithm |
|
|
806 | (1) |
|
27.9.1 Multiobjective PSO algorithm |
|
|
807 | (1) |
|
27.9.2 Updating a numerical example using the MOPSO algorithm |
|
|
808 | (2) |
|
|
810 | (1) |
|
|
810 | (5) |
Author Index |
|
815 | (2) |
Subject Index |
|
817 | |