Preface |
|
xxix | |
|
Part I Symmetry Groups and Algebras |
|
|
|
|
3 | (2) |
|
2 Some Properties of Groups |
|
|
5 | (35) |
|
2.1 Invariance and Conservation Laws |
|
|
5 | (2) |
|
2.2 Definition of a Group |
|
|
7 | (1) |
|
|
8 | (4) |
|
2.3.1 Additive Group of Integers |
|
|
8 | (1) |
|
2.3.2 Rotation and Translation Groups |
|
|
9 | (1) |
|
2.3.3 Parameterization of Continuous Groups |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
2.5 Homomorphism and Isomorphism |
|
|
13 | (2) |
|
2.6 Matrix Representations |
|
|
15 | (3) |
|
2.6.1 A Matrix Representation of S3 |
|
|
16 | (1) |
|
2.6.2 Dimensionality of Matrix Representations |
|
|
16 | (1) |
|
2.6.3 Linear Operators and Matrix Representations |
|
|
17 | (1) |
|
2.7 Reducible and Irreducible Representations |
|
|
18 | (1) |
|
2.8 Degenerate Multiplet Structure |
|
|
18 | (2) |
|
2.9 Some Examples of Matrix Groups |
|
|
20 | (1) |
|
2.9.1 General Linear Groups |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
24 | (1) |
|
2.13 Simple and Semisimple Groups |
|
|
25 | (1) |
|
2.14 Cosets and Factor Groups |
|
|
26 | (3) |
|
2.14.1 Left and Right Coset Decompositions |
|
|
26 | (2) |
|
|
28 | (1) |
|
2.15 Direct Product Groups |
|
|
29 | (2) |
|
2.16 Direct Product of Representations |
|
|
31 | (1) |
|
2.17 Characters of Representations |
|
|
31 | (9) |
|
2.17.1 Character Theorems |
|
|
32 | (2) |
|
|
34 | (1) |
|
Background and Further Reading |
|
|
35 | (1) |
|
|
35 | (5) |
|
3 Introduction to Lie Groups |
|
|
40 | (25) |
|
|
40 | (2) |
|
|
42 | (3) |
|
3.2.1 Invariant Subalgebras |
|
|
43 | (1) |
|
3.2.2 Adjoint Representation of the Algebra |
|
|
44 | (1) |
|
3.3 Angular Momentum and the Group SU(2) |
|
|
45 | (8) |
|
3.3.1 Fundamental Representation of SU(2) |
|
|
45 | (2) |
|
3.3.2 The Cartan--Dynkin Method |
|
|
47 | (1) |
|
3.3.3 Cartan--Dynkin Analysis of SU(2) |
|
|
48 | (2) |
|
3.3.4 The Clebsch--Gordan Series for SU(2) |
|
|
50 | (2) |
|
3.3.5 SU(2) Adjoint Representation |
|
|
52 | (1) |
|
|
53 | (5) |
|
3.4.1 The Neutron--Proton System |
|
|
53 | (1) |
|
3.4.2 Algebraic Structure for Isospin |
|
|
54 | (1) |
|
3.4.3 The U(1) and SU(2) Subgroups of U(2) |
|
|
55 | (1) |
|
3.4.4 Analogy between Angular Momentum and Isospin |
|
|
56 | (2) |
|
3.4.5 The Adjoint Representation of Isospin |
|
|
58 | (1) |
|
3.5 The Importance of Lie Groups in Physics |
|
|
58 | (1) |
|
3.6 Symmetry and Dynamics |
|
|
59 | (6) |
|
3.6.1 Local Gauge Theories |
|
|
59 | (1) |
|
3.6.2 Dynamical Symmetries |
|
|
60 | (1) |
|
Background and Further Reading |
|
|
60 | (1) |
|
|
60 | (5) |
|
|
65 | (10) |
|
|
65 | (2) |
|
4.1.1 Two-Particle Young Diagrams |
|
|
66 | (1) |
|
4.1.2 Many-Particle Young Diagrams |
|
|
66 | (1) |
|
|
66 | (1) |
|
4.2 Standard Arrangement of Young Tableaux |
|
|
67 | (1) |
|
4.3 Irreducible Representations |
|
|
68 | (1) |
|
4.3.1 Counting Standard Arrangements |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
4.5 Products of Representations |
|
|
70 | (5) |
|
|
71 | (1) |
|
|
72 | (1) |
|
Background and Further Reading |
|
|
73 | (1) |
|
|
73 | (2) |
|
5 Electrons on Periodic Lattices |
|
|
75 | (22) |
|
|
75 | (1) |
|
|
75 | (1) |
|
5.1.2 Wigner--Seitz Cells |
|
|
76 | (1) |
|
5.2 The Reciprocal Lattice |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (1) |
|
5.5 Electronic Band Structure |
|
|
80 | (2) |
|
|
82 | (2) |
|
5.6.1 Point Group Operations |
|
|
83 | (1) |
|
5.6.2 The Crystallographic Point Groups |
|
|
83 | (1) |
|
5.7 Example: The Ammonia Molecule |
|
|
84 | (8) |
|
5.7.1 Symmetry Operations |
|
|
84 | (3) |
|
5.7.2 A Matrix Representation |
|
|
87 | (3) |
|
|
90 | (1) |
|
5.7.4 Other Irreducible Representations |
|
|
91 | (1) |
|
5.8 General Lattice Symmetry Classifications |
|
|
92 | (1) |
|
|
93 | (4) |
|
5.9.1 Elements of the Space Group |
|
|
93 | (1) |
|
5.9.2 Symmorphic Space Groups |
|
|
93 | (1) |
|
Background and Further Reading |
|
|
94 | (1) |
|
|
94 | (3) |
|
|
97 | (29) |
|
6.1 Three-Dimensional Rotations |
|
|
97 | (1) |
|
|
98 | (7) |
|
6.2.1 Generators of SO(2) Rotations |
|
|
98 | (1) |
|
6.2.2 SO(2) Irreducible Representations |
|
|
99 | (2) |
|
6.2.3 Connectedness of the Manifold |
|
|
101 | (1) |
|
6.2.4 Compactness of the Manifold |
|
|
102 | (1) |
|
6.2.5 Invariant Group Integration |
|
|
103 | (2) |
|
|
105 | (7) |
|
6.3.1 Generators of SO(3) |
|
|
105 | (1) |
|
6.3.2 Matrix Elements of the Rotation Operator |
|
|
105 | (2) |
|
6.3.3 Properties of D-Matrices |
|
|
107 | (1) |
|
6.3.4 Characters for SO(3) |
|
|
108 | (1) |
|
6.3.5 Direct Products of SO(3) Representations |
|
|
109 | (1) |
|
6.3.6 SO(3) Vector-Coupling Coefficients |
|
|
109 | (1) |
|
6.3.7 Properties of SO(3) Clebsch--Gordan Coefficients |
|
|
110 | (1) |
|
|
111 | (1) |
|
6.3.9 Construction of SO(3) Irreducible Multiplets |
|
|
111 | (1) |
|
6.4 Tensor Operators under Group Transformations |
|
|
112 | (2) |
|
6.5 Tensors for the Rotation Group |
|
|
114 | (1) |
|
6.6 SO(3) Tensor Products |
|
|
115 | (1) |
|
6.7 The Wigner--Eckart Theorem |
|
|
116 | (1) |
|
6.8 The Wigner--Eckart Theorem for SO(3) |
|
|
117 | (2) |
|
6.8.1 Reduced Matrix Elements |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.9 Relationship of SO(3) and SU(2) |
|
|
119 | (7) |
|
6.9.1 SO(3) and SU(2) Group Manifolds |
|
|
119 | (1) |
|
6.9.2 Universal Covering Group of the SU(2) Algebra |
|
|
120 | (1) |
|
Background and Further Reading |
|
|
121 | (1) |
|
|
121 | (5) |
|
7 Classification of Lie Algebras |
|
|
126 | (17) |
|
7.1 Adjoint Representations |
|
|
126 | (3) |
|
7.1.1 The Cartan Subalgebra |
|
|
126 | (1) |
|
7.1.2 Raising and Lowering Operators |
|
|
127 | (2) |
|
7.2 The Cartan--Weyl Basis |
|
|
129 | (1) |
|
7.2.1 Semisimple Algebras |
|
|
129 | (1) |
|
7.2.2 Metric Tensor, Semisimplicity, and Compactness |
|
|
129 | (1) |
|
7.3 Structure of the Root Space |
|
|
130 | (2) |
|
7.3.1 Root Space Restrictions |
|
|
130 | (1) |
|
7.3.2 Lengths and Angles for Root Vectors |
|
|
131 | (1) |
|
7.4 Construction of Root Diagrams |
|
|
132 | (4) |
|
7.4.1 Rank-1 and Rank-2 Compact Lie Algebras |
|
|
133 | (2) |
|
7.4.2 An Ordering Prescription for Weights |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (4) |
|
|
138 | (1) |
|
7.6.2 Constructing All Roots from Dynkin Diagrams |
|
|
139 | (1) |
|
7.6.3 Constructing the Algebra from the Roots |
|
|
139 | (2) |
|
7.7 Dynkin Diagrams and the Simple Algebras |
|
|
141 | (2) |
|
Background and Further Reading |
|
|
142 | (1) |
|
|
142 | (1) |
|
8 Unitary and Special Unitary Groups |
|
|
143 | (18) |
|
8.1 Generators and Commutators for SU(3) |
|
|
143 | (2) |
|
8.2 SU(3) Casimir Operators |
|
|
145 | (1) |
|
|
145 | (4) |
|
8.3.1 SU(3) Raising and Lowering Operators |
|
|
145 | (1) |
|
8.3.2 SU(3) Irreducible Representations |
|
|
146 | (1) |
|
8.3.3 Dimensionality of SU(3) Irreps |
|
|
146 | (2) |
|
8.3.4 Construction of SU(3) Weight Diagrams |
|
|
148 | (1) |
|
8.4 Complex Conjugate Representations |
|
|
149 | (1) |
|
8.5 Real and Complex Representations |
|
|
149 | (1) |
|
8.6 Unitary Symmetry and Young Diagrams |
|
|
150 | (1) |
|
8.7 Young Diagrams for SU(N) |
|
|
151 | (4) |
|
8.7.1 Two Particles in Two States |
|
|
153 | (1) |
|
8.7.2 Two Particles in Three States |
|
|
154 | (1) |
|
8.7.3 Fundamental and Conjugate Representations |
|
|
154 | (1) |
|
8.8 Dimensionality of SU(N) Representations |
|
|
155 | (1) |
|
8.9 Direct Products of SU(N) Representations |
|
|
156 | (1) |
|
8.10 Weights from Young Diagrams |
|
|
157 | (1) |
|
8.11 Graphical Construction of Direct Products |
|
|
158 | (3) |
|
Background and Further Reading |
|
|
158 | (1) |
|
|
159 | (2) |
|
|
161 | (13) |
|
9.1 Symmetry in Particle Physics |
|
|
161 | (1) |
|
9.1.1 SU(3) Phenomenology and Quarks |
|
|
161 | (1) |
|
9.1.2 Non-Abelian Gauge Symmetries |
|
|
162 | (1) |
|
9.2 Fundamental SU(3) Quark Representations |
|
|
162 | (1) |
|
9.3 SU(3) Flavor Multiplets |
|
|
163 | (3) |
|
9.3.1 Mass Splittings in SU(3) Multiplets |
|
|
164 | (1) |
|
9.3.2 Quark Structure for Mesons and Baryons |
|
|
165 | (1) |
|
9.4 Isospin Subgroups of SU(3) |
|
|
166 | (4) |
|
9.4.1 Subgroup Analysis Using Weight Diagrams |
|
|
167 | (1) |
|
9.4.2 Subgroup Analysis Using Young Diagrams |
|
|
168 | (2) |
|
9.5 Extensions of Flavor SU(3) Symmetry |
|
|
170 | (4) |
|
9.5.1 Higher-Rank Flavor Symmetries |
|
|
170 | (1) |
|
9.5.2 SU(6) Flavor--Spin Symmetry |
|
|
171 | (1) |
|
9.5.3 Baryons and Mesons under SU(6) Symmetry |
|
|
171 | (1) |
|
Background and Further Reading |
|
|
172 | (1) |
|
|
172 | (2) |
|
10 Harmonic Oscillators and SU(3) |
|
|
174 | (17) |
|
10.1 The 3D Quantum Oscillator |
|
|
174 | (4) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
10.1.4 Angular Momentum Subgroup |
|
|
176 | (1) |
|
10.1.5 SO(3) Transformation Properties |
|
|
177 | (1) |
|
|
178 | (1) |
|
10.1.7 Many-Body Operators |
|
|
178 | (1) |
|
10.2 SU(3) and the Nuclear Shell Model |
|
|
178 | (1) |
|
10.3 SU(3) Classification of SD Shell States |
|
|
179 | (6) |
|
10.3.1 Classification Strategy |
|
|
180 | (1) |
|
10.3.2 Orbital and Spin--Isospin Symmetry |
|
|
181 | (1) |
|
10.3.3 Permutation Symmetry |
|
|
182 | (1) |
|
10.3.4 Example: Two Particles in the SD Shell |
|
|
182 | (3) |
|
10.4 SU(2) Subgroups and Intrinsic States |
|
|
185 | (2) |
|
10.4.1 Weight Space Operators and Diagrams |
|
|
185 | (1) |
|
10.4.2 Angular Momentum Content of Multiplets |
|
|
186 | (1) |
|
10.5 Collective Motion in the Nuclear SD Shell |
|
|
187 | (4) |
|
|
187 | (1) |
|
10.5.2 Group-Theoretical Solution |
|
|
188 | (1) |
|
10.5.3 The Theoretical Spectrum |
|
|
189 | (1) |
|
Background and Further Reading |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (18) |
|
11.1 Clebsch--Gordan Coefficients for SU(3) |
|
|
191 | (1) |
|
11.2 Constructing SU(3) Clebsch--Gordan Coefficients |
|
|
192 | (3) |
|
11.3 Matrix Elements of Generators |
|
|
195 | (1) |
|
|
195 | (2) |
|
11.4.1 Racah Factorization Lemma |
|
|
197 | (1) |
|
11.4.2 Evaluating and Using Isoscalar Factors |
|
|
197 | (1) |
|
11.5 SU(3) ⊃ SO(3) Tensor Operators |
|
|
197 | (1) |
|
11.6 The SU(3) Wigner--Eckart Theorem |
|
|
198 | (1) |
|
11.7 Structure of SU(3) Matrix Elements |
|
|
199 | (1) |
|
11.8 The Gell--Mann, Okubo Mass Formula |
|
|
200 | (2) |
|
11.9 SU(3) Oscillator Reduced Matrix Elements |
|
|
202 | (4) |
|
11.9.1 Spherical Operators |
|
|
202 | (1) |
|
11.9.2 Matrix Elements for Creation and Annihilation Operators |
|
|
203 | (1) |
|
11.9.3 Electromagnetic Transitions in the SD Shell |
|
|
204 | (2) |
|
11.10 Lie Algebras and Many-Body Systems |
|
|
206 | (3) |
|
Background and Further Reading |
|
|
206 | (1) |
|
|
206 | (3) |
|
12 Introduction to Non-Compact Groups |
|
|
209 | (11) |
|
12.1 Review of the Compact Group SU(n) |
|
|
209 | (1) |
|
12.2 The Non-Compact Group SU(l, m) |
|
|
210 | (1) |
|
12.2.1 Signature of the Metric |
|
|
210 | (1) |
|
12.2.2 Parameter Space for SU(1, 1) |
|
|
211 | (1) |
|
12.3 The Non-Compact Group SO(l, m) |
|
|
211 | (1) |
|
|
212 | (4) |
|
12.4.1 The Euclidean Group E3 for 3D Space |
|
|
212 | (1) |
|
12.4.2 The Euclidean Group E2 for 2D Space |
|
|
212 | (2) |
|
12.4.3 Semidirect Product Groups |
|
|
214 | (1) |
|
12.4.4 Algebraic Properties of E2 |
|
|
214 | (1) |
|
12.4.5 Invariant Subgroup of Translations |
|
|
215 | (1) |
|
12.5 Method of Induced Representations for E2 |
|
|
216 | (4) |
|
12.5.1 Generating the Representation |
|
|
216 | (2) |
|
12.5.2 Significance of the Abelian Invariant Subgroup |
|
|
218 | (1) |
|
Background and Further Reading |
|
|
218 | (1) |
|
|
218 | (2) |
|
|
220 | (20) |
|
|
220 | (4) |
|
13.1.1 A Covariant Notation |
|
|
220 | (2) |
|
13.1.2 Tensor Transformation Laws |
|
|
222 | (2) |
|
13.2 Lorentz Transformations |
|
|
224 | (3) |
|
13.2.1 Lorentz Boosts as Minkowski Rotations |
|
|
224 | (1) |
|
13.2.2 Generators of Boosts and Rotations |
|
|
225 | (1) |
|
13.2.3 Commutation Algebra for the Lorentz Group |
|
|
226 | (1) |
|
13.3 Classification of Lorentz Transformations |
|
|
227 | (2) |
|
13.3.1 The Four Pieces of the Full Lorentz Group |
|
|
227 | (1) |
|
13.3.2 Improper Lorentz Transformations |
|
|
228 | (1) |
|
13.3.3 Lightcone Classification of Minkowski Vectors |
|
|
228 | (1) |
|
13.4 Properties of the Lorentz Group |
|
|
229 | (1) |
|
13.5 The Lorentz Group and SL(2,C) |
|
|
230 | (1) |
|
13.5.1 A Mapping between 4-Vectors and Matrices |
|
|
230 | (1) |
|
13.5.2 The Universal Covering Group of SO(3, 1) |
|
|
231 | (1) |
|
13.6 Spinors and Lorentz Transformations |
|
|
231 | (2) |
|
13.6.1 SU(2) × SU(2) Representations of the Lorentz Group |
|
|
232 | (1) |
|
13.6.2 Two Inequivalent Spinor Representations |
|
|
232 | (1) |
|
13.7 Space Inversion for the Lorentz Group |
|
|
233 | (3) |
|
13.7.1 Action of Parity on Generators and Representations |
|
|
234 | (1) |
|
13.7.2 General and Self-Conjugate Representations |
|
|
235 | (1) |
|
13.8 Parity and 4-Spinors |
|
|
236 | (1) |
|
13.9 Higher-Dimensional Lorentz Representations |
|
|
237 | (1) |
|
13.10 Non-Unitarity of Representations |
|
|
238 | (1) |
|
13.11 Meaning of Non-Unitary Representations |
|
|
238 | (2) |
|
Background and Further Reading |
|
|
239 | (1) |
|
|
239 | (1) |
|
14 Lorentz-Covariant Fields |
|
|
240 | (24) |
|
14.1 Lorentz Covariance of Maxwell's Equations |
|
|
240 | (3) |
|
14.1.1 Scalar and Vector Potentials |
|
|
241 | (1) |
|
14.1.2 Gauge Transformations |
|
|
241 | (1) |
|
14.1.3 Manifestly Covariant Form of the Maxwell Equations |
|
|
242 | (1) |
|
|
243 | (2) |
|
14.2.1 Lorentz-Boosted Spinors |
|
|
244 | (1) |
|
14.2.2 A Lorentz-Covariant Notation |
|
|
244 | (1) |
|
14.3 Dirac Bilinear Covariants |
|
|
245 | (3) |
|
14.3.1 Covariance of the Dirac Equation |
|
|
246 | (1) |
|
14.3.2 Transformation Properties of Bilinear Products |
|
|
247 | (1) |
|
14.4 Weyl Equations and Massless Fermions |
|
|
248 | (2) |
|
|
250 | (4) |
|
14.5.1 Helicity States for Fermions |
|
|
250 | (1) |
|
14.5.2 Dirac Equation in Pauli--Dirac Representation |
|
|
251 | (1) |
|
14.5.3 Helicity and Chirality for Dirac Fermions |
|
|
252 | (1) |
|
14.5.4 Projection Operators for Chiral Fermions |
|
|
252 | (2) |
|
14.5.5 Interactions and Chiral Symmetry |
|
|
254 | (1) |
|
14.6 The Majorana Equation |
|
|
254 | (3) |
|
14.6.1 Dirac and Majorana Masses |
|
|
255 | (1) |
|
14.6.2 Neutrinoless Double β-Decay |
|
|
256 | (1) |
|
14.7 Summary: Possible Spinor Types |
|
|
257 | (2) |
|
14.8 Spinor Symmetry in the Weak Interactions |
|
|
259 | (5) |
|
14.8.1 The Left Hand of the Neutrino |
|
|
259 | (1) |
|
14.8.2 Violation of Parity P |
|
|
259 | (1) |
|
14.8.3 C, CP, and T Symmetries |
|
|
260 | (1) |
|
14.8.4 A More Complete Picture |
|
|
260 | (1) |
|
Background and Further Reading |
|
|
261 | (1) |
|
|
261 | (3) |
|
|
264 | (16) |
|
15.1 The Poincare Multiplication Rule |
|
|
264 | (1) |
|
15.2 Generators of Poincare Transformations |
|
|
265 | (1) |
|
15.2.1 Proper Lorentz Transformations |
|
|
265 | (1) |
|
15.2.2 Four-Dimensional Spacetime Translations |
|
|
266 | (1) |
|
15.2.3 Commutators for Poincare Generators |
|
|
266 | (1) |
|
15.3 Representation Theory of the Poincare Group |
|
|
266 | (3) |
|
15.3.1 Casimir Operators for the Poincare Group |
|
|
266 | (2) |
|
15.3.2 Classification of Poincare States |
|
|
268 | (1) |
|
15.3.3 Method of Induced Representations |
|
|
269 | (1) |
|
15.4 Massive Representations of the Poincare Group |
|
|
269 | (3) |
|
15.4.1 Quantum Numbers for Massive States |
|
|
270 | (1) |
|
15.4.2 Action of the Poincare Group on Massive States |
|
|
270 | (1) |
|
15.4.3 Summary: Representations for Massive States |
|
|
271 | (1) |
|
15.5 Massless Representations |
|
|
272 | (2) |
|
15.5.1 The Standard Lightlike Vector |
|
|
272 | (1) |
|
15.5.2 Lie Algebra of the Little Group |
|
|
273 | (1) |
|
15.5.3 Quantum Numbers for Massless States |
|
|
273 | (1) |
|
15.6 Mass and Spin for Poincare Representations |
|
|
274 | (1) |
|
15.7 Lorentz and Poincare Representations |
|
|
274 | (6) |
|
15.7.1 Operators for Relativistic Quantum Fields |
|
|
275 | (1) |
|
15.7.2 Wave Equations for Quantum Fields |
|
|
276 | (1) |
|
15.7.3 Plane-Wave Expansion of the Fields |
|
|
276 | (1) |
|
15.7.4 The Relationship of Fields and Particles |
|
|
277 | (1) |
|
15.7.5 Symmetry and the Wave Equation |
|
|
277 | (1) |
|
Background and Further Reading |
|
|
278 | (1) |
|
|
278 | (2) |
|
|
280 | (21) |
|
16.1 Relativistic Quantum Field Theory |
|
|
280 | (4) |
|
16.1.1 Quantization of Classical Fields |
|
|
280 | (1) |
|
16.1.2 Symmetries of the Classical Action |
|
|
281 | (1) |
|
16.1.3 Lagrangian Densities for Free Fields |
|
|
281 | (2) |
|
16.1.4 Euler--Lagrange Field Equations |
|
|
283 | (1) |
|
16.2 Conserved Currents and Charges |
|
|
284 | (3) |
|
|
284 | (1) |
|
|
285 | (1) |
|
16.2.3 Symmetries for Interacting Fields |
|
|
286 | (1) |
|
16.2.4 Partially Conserved Currents |
|
|
287 | (1) |
|
16.3 Gauge Invariance in Quantum Mechanics |
|
|
287 | (2) |
|
16.4 Gauge Invariance and the Photon Mass |
|
|
289 | (1) |
|
16.5 Quantum Electrodynamics |
|
|
289 | (2) |
|
16.5.1 Global U(1) Gauge Invariance |
|
|
289 | (1) |
|
16.5.2 Local U(1) Gauge Invariance |
|
|
289 | (1) |
|
16.5.3 Gauging the U(1) Symmetry |
|
|
290 | (1) |
|
|
291 | (10) |
|
16.6.1 Non-Abelian Gauge Invariance |
|
|
291 | (1) |
|
16.6.2 Covariant Derivatives |
|
|
292 | (1) |
|
16.6.3 Non-Abelian Generalization of QED |
|
|
293 | (1) |
|
16.6.4 Properties of Non-Abelian Gauge Fields |
|
|
293 | (2) |
|
Background and Further Reading |
|
|
295 | (1) |
|
|
295 | (6) |
|
|
|
17 Spontaneous Symmetry Breaking |
|
|
301 | (10) |
|
17.1 Modes of Symmetry Breaking |
|
|
301 | (1) |
|
17.2 Explicit Symmetry Breaking |
|
|
301 | (1) |
|
17.3 The Vacuum and Hidden Symmetry |
|
|
302 | (1) |
|
17.4 Spontaneously Broken Discrete Symmetry |
|
|
303 | (2) |
|
17.4.1 Symmetry in the Wigner Mode |
|
|
303 | (1) |
|
17.4.2 Spontaneously Broken Symmetry |
|
|
304 | (1) |
|
17.4.3 Summary of Spontaneously Broken Discrete Symmetry |
|
|
305 | (1) |
|
17.5 Spontaneously Broken Continuous Symmetry |
|
|
305 | (6) |
|
17.5.1 Symmetric Classical Vacuum |
|
|
306 | (1) |
|
17.5.2 Hidden Continuous Symmetry |
|
|
306 | (1) |
|
17.5.3 The Goldstone Theorem |
|
|
307 | (2) |
|
17.5.4 The Stability Subgroup |
|
|
309 | (1) |
|
Background and Further Reading |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (13) |
|
18.1 Photons and the Higgs Loophole |
|
|
311 | (1) |
|
18.2 The Abelian Higgs Model |
|
|
312 | (3) |
|
18.2.1 Lagrangian Density |
|
|
312 | (1) |
|
|
313 | (1) |
|
18.2.3 Understanding the Higgs Mechanism |
|
|
314 | (1) |
|
18.3 Vacuum Screening Currents |
|
|
315 | (6) |
|
18.3.1 Gauge Invariance and Mass |
|
|
315 | (1) |
|
18.3.2 Screening Currents and Effective Mass |
|
|
316 | (1) |
|
18.3.3 Atomic Screening Currents |
|
|
316 | (2) |
|
18.3.4 The Meissner Effect and Massive Photons |
|
|
318 | (2) |
|
18.3.5 Gauge Invariance and Longitudinal Polarization |
|
|
320 | (1) |
|
|
321 | (3) |
|
Background and Further Reading |
|
|
322 | (1) |
|
|
322 | (2) |
|
|
324 | (16) |
|
19.1 The Standard Electroweak Model |
|
|
324 | (8) |
|
19.1.1 Guidance from Data |
|
|
324 | (2) |
|
|
326 | (1) |
|
19.1.3 Electroweak Lagrangian Density |
|
|
327 | (2) |
|
19.1.4 The Electroweak Higgs Mechanism |
|
|
329 | (1) |
|
|
330 | (2) |
|
19.2 Quantum Chromodynamics |
|
|
332 | (6) |
|
19.2.1 A Color Gauge Theory |
|
|
332 | (1) |
|
19.2.2 The QCD Lagrangian Density |
|
|
333 | (1) |
|
19.2.3 Symmetries of the QCD Lagrangian Density |
|
|
334 | (1) |
|
19.2.4 Asymptotic Freedom and Confinement |
|
|
335 | (1) |
|
19.2.5 Exotic Hadrons and Glueballs |
|
|
336 | (2) |
|
19.3 The Gauge Theory of Fundamental Interactions |
|
|
338 | (2) |
|
Background and Further Reading |
|
|
338 | (1) |
|
|
338 | (2) |
|
|
340 | (28) |
|
20.1 The Microscopic Dynamical Symmetry Method |
|
|
340 | (3) |
|
20.1.1 Solution Algorithm |
|
|
341 | (1) |
|
20.1.2 Validity and Utility of the Approach |
|
|
342 | (1) |
|
20.1.3 Spontaneously Broken Symmetry and Dynamical Symmetry |
|
|
343 | (1) |
|
20.1.4 Kinematics and Dynamics |
|
|
343 | (1) |
|
20.2 Monolayer Graphene in a Strong Magnetic Field |
|
|
343 | (18) |
|
20.2.1 Electronic Dispersion in Monolayer Graphene |
|
|
344 | (1) |
|
20.2.2 Landau Levels for Massless Dirac Electrons |
|
|
345 | (3) |
|
20.2.3 SU(4) Quantum Hall Ferromagnetism |
|
|
348 | (1) |
|
20.2.4 Fermion Dynamical Symmetries for Graphene |
|
|
349 | (4) |
|
20.2.5 Graphene SO(8) Dynamical Symmetries |
|
|
353 | (2) |
|
20.2.6 Generalized Coherent States for Graphene |
|
|
355 | (3) |
|
20.2.7 Physical Interpretation of the Energy Surfaces |
|
|
358 | (1) |
|
20.2.8 Quantum Phase Transitions in Graphene |
|
|
359 | (2) |
|
20.3 Universality of Emergent States |
|
|
361 | (7) |
|
20.3.1 Topological and Algebraic Constraints |
|
|
362 | (3) |
|
20.3.2 Analogy with General Relativity |
|
|
365 | (1) |
|
20.3.3 Analogy with Renormalization Group Flow |
|
|
365 | (1) |
|
Background and Further Reading |
|
|
365 | (1) |
|
|
366 | (2) |
|
21 Generalized Coherent States |
|
|
368 | (9) |
|
21.1 Glauber Coherent States |
|
|
368 | (1) |
|
21.2 Symmetry and Coherent Electromagnetic States |
|
|
369 | (2) |
|
21.2.1 Quantum Optics Hamiltonian |
|
|
369 | (1) |
|
21.2.2 Symmetry of the Hamiltonian |
|
|
370 | (1) |
|
|
370 | (1) |
|
21.2.4 Stability Subgroup |
|
|
370 | (1) |
|
|
371 | (1) |
|
21.2.6 The Coherent State |
|
|
371 | (1) |
|
21.3 Construction of Generalized Coherent States |
|
|
371 | (2) |
|
21.4 Atoms Interacting with Classical Radiation |
|
|
373 | (2) |
|
21.5 Fermion Coherent States |
|
|
375 | (2) |
|
Background and Further Reading |
|
|
376 | (1) |
|
|
376 | (1) |
|
22 Restoring Symmetry by Projection |
|
|
377 | (23) |
|
22.1 Rotational Symmetry in Atomic Nuclei |
|
|
377 | (1) |
|
22.2 The Method of Generator Coordinates |
|
|
378 | (3) |
|
22.2.1 Generator Coordinates and Generating Functions |
|
|
378 | (1) |
|
22.2.2 The Hill--Wheeler Equation |
|
|
379 | (2) |
|
22.3 Angular Momentum Projection |
|
|
381 | (4) |
|
22.3.1 The Rotation Operator and its Representations |
|
|
381 | (2) |
|
22.3.2 The Angular Momentum Projection Operator |
|
|
383 | (1) |
|
22.3.3 Solving the Eigenvalue Equation |
|
|
384 | (1) |
|
22.4 Particle Number Projection |
|
|
385 | (7) |
|
22.4.1 Violation of Particle Number in BCS Theory |
|
|
386 | (1) |
|
22.4.2 Bogoliubov Quasiparticles |
|
|
387 | (3) |
|
22.4.3 The Particle Number Projection Operator |
|
|
390 | (2) |
|
|
392 | (3) |
|
22.5.1 The Parity Transformation |
|
|
392 | (1) |
|
22.5.2 Breaking Parity Spontaneously |
|
|
393 | (1) |
|
22.5.3 The Parity Projection Operator |
|
|
394 | (1) |
|
22.6 Spin and Momentum Projection for Electrons |
|
|
395 | (5) |
|
22.6.1 Hartree--Fock Approximation for the Hubbard Model |
|
|
395 | (1) |
|
22.6.2 Spin and Momentum Projection in the Hubbard Model |
|
|
396 | (1) |
|
Background and Further Reading |
|
|
397 | (1) |
|
|
398 | (2) |
|
23 Quantum Phase Transitions |
|
|
400 | (19) |
|
23.1 Classical and Quantum Phases |
|
|
400 | (1) |
|
23.1.1 Thermal and Quantum Fluctuations |
|
|
400 | (1) |
|
23.1.2 Quantum Critical Behavior |
|
|
401 | (1) |
|
23.2 Classification of Phase Transitions |
|
|
401 | (1) |
|
23.3 Classical Second-Order Phase Transitions |
|
|
402 | (2) |
|
23.3.1 Critical Exponents |
|
|
402 | (1) |
|
|
403 | (1) |
|
23.4 Continuous Quantum Phase Transitions |
|
|
404 | (2) |
|
23.4.1 Order Only at Zero Temperature |
|
|
405 | (1) |
|
23.4.2 Order Also at Finite Temperature |
|
|
406 | (1) |
|
23.5 Quantum to Classical Crossover |
|
|
406 | (2) |
|
23.5.1 The Classical-Quantum Mapping |
|
|
406 | (1) |
|
23.5.2 Optimal Dimensionality |
|
|
407 | (1) |
|
23.5.3 Quantum versus Classical Phase Transitions |
|
|
407 | (1) |
|
23.6 Example: Ising Spins in a Transverse Field |
|
|
408 | (4) |
|
|
409 | (1) |
|
23.6.2 Ground States and Quasiparticle States for g → 0 |
|
|
409 | (1) |
|
23.6.3 Ground States and Quasiparticle States for g → ∞ |
|
|
410 | (1) |
|
23.6.4 Competing Ground States |
|
|
410 | (1) |
|
23.6.5 The Quantum Critical Region |
|
|
411 | (1) |
|
|
411 | (1) |
|
23.7 Dynamical Symmetry and Quantum Phases |
|
|
412 | (7) |
|
23.7.1 Quantum Phases in Superconductors |
|
|
412 | (1) |
|
23.7.2 Unique Perspective of Dynamical Symmetries |
|
|
413 | (1) |
|
23.7.3 Quantum Phases and Insights from Symmetry |
|
|
414 | (1) |
|
Background and Further Reading |
|
|
415 | (1) |
|
|
416 | (3) |
|
Part III Topology and Geometry |
|
|
|
24 Topology, Manifolds, and Metrics |
|
|
419 | (20) |
|
24.1 Basic Concepts of Topology |
|
|
419 | (2) |
|
24.1.1 Discrete Categories Distinguished Qualitatively |
|
|
419 | (1) |
|
24.1.2 The Nature of Topological Proofs |
|
|
420 | (1) |
|
|
421 | (1) |
|
24.2 Topology and Topological Spaces |
|
|
421 | (6) |
|
24.2.1 Formal Definition of a Topology |
|
|
423 | (1) |
|
|
423 | (1) |
|
|
424 | (2) |
|
|
426 | (1) |
|
|
426 | (1) |
|
24.3 Topological Invariants |
|
|
427 | (2) |
|
24.3.1 Compactness Is a Topological Invariant |
|
|
427 | (1) |
|
24.3.2 Connectedness Is a Topological Invariant |
|
|
427 | (1) |
|
24.3.3 Dimensionality Is a Topological Invariant |
|
|
427 | (2) |
|
|
429 | (5) |
|
24.4.1 Homotopic Equivalence Classes |
|
|
429 | (1) |
|
24.4.2 Homotopy Classes Are Topological Invariants |
|
|
429 | (1) |
|
24.4.3 The First Homotopy Group |
|
|
430 | (3) |
|
24.4.4 Higher Homotopy Groups |
|
|
433 | (1) |
|
24.5 Manifolds and Metric Spaces |
|
|
434 | (5) |
|
24.5.1 Differentiable Manifolds |
|
|
434 | (3) |
|
|
437 | (1) |
|
Background and Further Reading |
|
|
437 | (1) |
|
|
437 | (2) |
|
|
439 | (11) |
|
25.1 Models in (1+1) Dimensions |
|
|
439 | (4) |
|
25.1.1 Equations of Motion |
|
|
439 | (1) |
|
25.1.2 Vacuum States and Boundary Conditions |
|
|
440 | (1) |
|
25.1.3 Topological Charges |
|
|
441 | (1) |
|
25.1.4 Soliton Solutions in (1+1) Dimensions |
|
|
442 | (1) |
|
25.2 Solitons in (2+1) and (3+1) Dimensions |
|
|
443 | (2) |
|
|
443 | (1) |
|
25.2.2 Mapping Spheres to Spheres |
|
|
444 | (1) |
|
25.3 Yang-Mills Fields and Instantons |
|
|
445 | (5) |
|
25.3.1 Solitons in the Euclidean Yang-Mills Field |
|
|
445 | (1) |
|
25.3.2 Boundary Conditions |
|
|
446 | (1) |
|
25.3.3 Topological Classification of Solutions |
|
|
447 | (1) |
|
25.3.4 Physical Interpretation of Instantons |
|
|
447 | (2) |
|
Background and Further Reading |
|
|
449 | (1) |
|
|
449 | (1) |
|
26 Geometry and Gauge Theories |
|
|
450 | (14) |
|
|
450 | (5) |
|
26.1.1 Flat and Curved Manifolds |
|
|
450 | (3) |
|
26.1.2 Connections and Covariant Derivatives |
|
|
453 | (1) |
|
26.1.3 Curvature and Parallel Transport |
|
|
454 | (1) |
|
26.2 Absolute Derivatives |
|
|
455 | (1) |
|
26.3 Parallel Transport in Charge Space |
|
|
455 | (1) |
|
26.4 Fiber Bundles and Gauge Manifolds |
|
|
456 | (2) |
|
26.4.1 Tangent Spaces and Tangent Bundles |
|
|
456 | (1) |
|
|
457 | (1) |
|
26.5 Gauge Symmetry on a Spacetime Lattice |
|
|
458 | (6) |
|
26.5.1 Path-Dependent Gauge Representations |
|
|
458 | (1) |
|
26.5.2 Lattice Gauge Symmetries |
|
|
459 | (2) |
|
Background and Further Reading |
|
|
461 | (1) |
|
|
462 | (2) |
|
|
464 | (14) |
|
27.1 The Aharonov--Bohm Effect |
|
|
464 | (4) |
|
27.1.1 Experimental Setup |
|
|
464 | (1) |
|
27.1.2 Analysis of Magnetic Fields |
|
|
465 | (1) |
|
27.1.3 Phase of the Electron Wavefunction |
|
|
465 | (1) |
|
27.1.4 Topological Origin of the Aharonov--Bohm Effect |
|
|
466 | (2) |
|
|
468 | (6) |
|
27.2.1 Fast and Slow Degrees of Freedom |
|
|
468 | (2) |
|
27.2.2 The Berry Connection |
|
|
470 | (1) |
|
27.2.3 Trading the Connection for a Phase |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
472 | (2) |
|
27.3 An Electron in a Magnetic Field |
|
|
474 | (1) |
|
27.4 Topological Implications of Berry Phases |
|
|
475 | (3) |
|
Background and Further Reading |
|
|
476 | (1) |
|
|
477 | (1) |
|
28 Topology of the Quantum Hall Effect |
|
|
478 | (26) |
|
28.1 The Classical Hall Effect |
|
|
478 | (2) |
|
28.1.1 Hall Effect Measurements |
|
|
478 | (1) |
|
28.1.2 Quantization of the Hall Effect |
|
|
479 | (1) |
|
28.2 Landau Levels for Non-Relativistic Electrons |
|
|
480 | (2) |
|
28.2.1 Hamiltonian and Schrodinger Equation |
|
|
481 | (1) |
|
28.2.2 Landau Levels and Density of States |
|
|
482 | (1) |
|
28.3 The Integer Quantum Hall Effect |
|
|
482 | (7) |
|
28.3.1 Understanding the Integer Quantum Hall Effect |
|
|
483 | (2) |
|
28.3.2 Disorder and the Integer Quantum Hall State |
|
|
485 | (2) |
|
28.3.3 Edge States and Conduction |
|
|
487 | (2) |
|
28.4 Topology and Integer Quantum Hall Effects |
|
|
489 | (9) |
|
28.4.1 Berry Phases and Adiabatic Curvature |
|
|
490 | (1) |
|
|
491 | (7) |
|
28.5 The Fractional Quantum Hall Effect |
|
|
498 | (6) |
|
28.5.1 Properties of the Fractional Quantum Hall State |
|
|
498 | (2) |
|
28.5.2 Fractionally Charged Quasiparticles |
|
|
500 | (1) |
|
28.5.3 Nature of the Edge States |
|
|
500 | (1) |
|
28.5.4 Topology and Fractional Quantum Hall States |
|
|
500 | (1) |
|
Background and Further Reading |
|
|
501 | (1) |
|
|
502 | (2) |
|
|
504 | (31) |
|
29.1 Topology and the Many-Body Paradigm |
|
|
504 | (3) |
|
29.1.1 Adiabatic Continuity |
|
|
504 | (1) |
|
29.1.2 Spontaneous Symmetry Breaking |
|
|
505 | (1) |
|
29.1.3 Beyond the Landau Picture |
|
|
506 | (1) |
|
29.2 Berry Phases and Brillouin Zones |
|
|
507 | (1) |
|
29.3 Topological States and Symmetry |
|
|
508 | (1) |
|
29.4 Topological Insulators |
|
|
509 | (9) |
|
29.4.1 The Quantum Spin Hall Effect |
|
|
510 | (2) |
|
29.4.2 The Z2 Topological Index |
|
|
512 | (6) |
|
|
518 | (4) |
|
29.5.1 A Topological Conservation Law |
|
|
519 | (1) |
|
29.5.2 Realization of a Weyl Semimetal |
|
|
520 | (2) |
|
|
522 | (2) |
|
29.6.1 The Dirac Equation in Condensed Matter |
|
|
523 | (1) |
|
29.6.2 Quasiparticles and Anti-Quasiparticles |
|
|
523 | (1) |
|
29.7 Topological Superconductors |
|
|
524 | (1) |
|
29.7.1 Topological Majorana Fermions |
|
|
524 | (1) |
|
29.7.2 Fractionalization of Electrons |
|
|
524 | (1) |
|
29.8 Fractional Statistics |
|
|
525 | (3) |
|
|
525 | (1) |
|
|
526 | (2) |
|
29.8.3 Abelian and Non-Abelian Anyons |
|
|
528 | (1) |
|
29.9 Quantum Computers and Topological Matter |
|
|
528 | (7) |
|
29.9.1 Qubits and Quantum Information |
|
|
529 | (1) |
|
29.9.2 The Problem of Decoherence |
|
|
530 | (1) |
|
29.9.3 Topological Quantum Computation |
|
|
531 | (1) |
|
Background and Further Reading |
|
|
531 | (1) |
|
|
532 | (3) |
|
Part IV A Variety of Physical Applications |
|
|
|
30 Angular Momentum Recoupling |
|
|
535 | (8) |
|
30.1 Recoupling of Three Angular Momenta |
|
|
535 | (2) |
|
|
536 | (1) |
|
30.1.2 Racah Coefficients |
|
|
536 | (1) |
|
30.2 Matrix Elements of Tensor Products |
|
|
537 | (1) |
|
30.3 Recoupling of Four Angular Momenta |
|
|
538 | (5) |
|
|
538 | (1) |
|
30.3.2 Transformation Between L-S and J-JCoupling |
|
|
539 | (1) |
|
30.3.3 Matrix Element of an Independent Tensor Product |
|
|
540 | (1) |
|
30.3.4 Matrix Element of a Scalar Product |
|
|
540 | (1) |
|
Background and Further Reading |
|
|
541 | (1) |
|
|
541 | (2) |
|
31 Nuclear Fermion Dynamical Symmetry |
|
|
543 | (14) |
|
|
543 | (3) |
|
31.2 The Fermion Dynamical Symmetry Model |
|
|
546 | (8) |
|
31.2.1 Dynamical Symmetry Generators |
|
|
547 | (1) |
|
31.2.2 The FDSM Dynamical Symmetries |
|
|
548 | (1) |
|
31.2.3 FDSM Irreducible Representations |
|
|
549 | (2) |
|
31.2.4 Quantitative FDSM Calculations |
|
|
551 | (3) |
|
31.3 The Interacting Boson Model |
|
|
554 | (3) |
|
Background and Further Reading |
|
|
555 | (1) |
|
|
555 | (2) |
|
32 Superconductivity and Superfluidity |
|
|
557 | (21) |
|
32.1 Conventional Superconductors |
|
|
557 | (1) |
|
32.2 Unconventional Superconductors |
|
|
557 | (3) |
|
32.3 The SU(4) Model of Non-Abelian Superconductors |
|
|
560 | (9) |
|
|
561 | (3) |
|
32.3.2 The SU(4) Collective Subspace |
|
|
564 | (1) |
|
32.3.3 The Dynamical Symmetry Hamiltonian |
|
|
565 | (1) |
|
32.3.4 The SU(4) Dynamical Symmetry Limits |
|
|
566 | (1) |
|
32.3.5 The SO(4) Dynamical Symmetry Limit |
|
|
567 | (1) |
|
32.3.6 The SU(2) Dynamical Symmetry Limit |
|
|
568 | (1) |
|
32.3.7 The SO(5) Dynamical Symmetry Limit |
|
|
568 | (1) |
|
32.3.8 Conventional and Unconventional Superconductors |
|
|
569 | (1) |
|
32.4 Some Implications of SU(4) Symmetry |
|
|
569 | (9) |
|
32.4.1 No Double Occupancy |
|
|
569 | (1) |
|
32.4.2 Quantitative Gap and Phase Diagrams |
|
|
570 | (1) |
|
32.4.3 Coherent State Energy Surfaces |
|
|
571 | (2) |
|
32.4.4 Fundamental SU(4) Instabilities |
|
|
573 | (1) |
|
32.4.5 Origin of High Critical Temperatures |
|
|
574 | (2) |
|
32.4.6 Universality of Dynamical Symmetry States |
|
|
576 | (1) |
|
Background and Further Reading |
|
|
576 | (1) |
|
|
577 | (1) |
|
|
578 | (6) |
|
33.1 The CVC and PCAC Hypotheses |
|
|
578 | (2) |
|
33.1.1 Current Algebra and Chiral Symmetry |
|
|
578 | (1) |
|
33.1.2 The Partially Conserved Axial Current |
|
|
579 | (1) |
|
|
580 | (4) |
|
33.2.1 The Particle Spectrum |
|
|
580 | (2) |
|
33.2.2 Explicit Breaking of Chiral Symmetry |
|
|
582 | (1) |
|
Background and Further Reading |
|
|
582 | (1) |
|
|
582 | (2) |
|
34 Grand Unified Theories |
|
|
584 | (7) |
|
34.1 Evolution of Fundamental Coupling Constants |
|
|
584 | (1) |
|
34.2 Minimal Criteria for a Grand Unified Group |
|
|
585 | (1) |
|
34.3 The SU(5) Grand Unified Theory |
|
|
586 | (2) |
|
|
588 | (3) |
|
Background and Further Reading |
|
|
590 | (1) |
|
|
590 | (1) |
|
Appendix A Second Quantization |
|
|
591 | (12) |
|
A.1 Symmetrized Many-Particle Wavefunctions |
|
|
591 | (2) |
|
A.1.1 Bosonic and Fermionic Wavefunctions |
|
|
592 | (1) |
|
A.1.2 Slater Determinants |
|
|
593 | (1) |
|
|
593 | (2) |
|
A.2.1 Bras, Kets, and Bra-Ket Pairs |
|
|
594 | (1) |
|
A.2.2 Bras and Kets as Row and Column Vectors |
|
|
594 | (1) |
|
A.2.3 Linear Operators Acting on Bras and Kets |
|
|
595 | (1) |
|
A.3 Occupation Number Representation |
|
|
595 | (8) |
|
A.3.1 Creation and Annihilation Operators |
|
|
597 | (1) |
|
A.3.2 Basis Transformations |
|
|
598 | (1) |
|
A.3.3 Many-Particle Vector States |
|
|
599 | (1) |
|
A.3.4 One-Body and Two-Body Operators |
|
|
600 | (3) |
|
|
603 | (2) |
|
B.1 The Advantage of Natural Units |
|
|
603 | (1) |
|
B.2 Natural Units in Quantum Field Theory |
|
|
603 | (2) |
|
Appendix C Angular Momentum Tables |
|
|
605 | (3) |
|
|
608 | (1) |
References |
|
609 | (8) |
Index |
|
617 | |