Atjaunināt sīkdatņu piekrišanu

E-grāmata: Synthetic Methods for Biologically Active Molecules: Exploring the Potential of Bioreductions

Edited by (Dipartimento di Chimica, Materiali ed Ingegneria Chimica, Politecnico di Milano, Milano, Italy)
  • Formāts: PDF+DRM
  • Izdošanas datums: 23-Aug-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527665815
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 168,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 23-Aug-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527665815
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Organic chemists review the current state of using enzyme catalysts in the development of synthetic procedures, especially for preparing high-value products in the life sciences, such as biologically active molecules and active pharmaceutical ingredients. Focusing on the currently available toolbox of biocatalyzed reductions of C=O, C=C, and formal C=N double bonds, they identify both reliable biocatalyzed transformations that can currently be used by organic chemists involved in developing manufacturing processes, and biotransformations that still require some improvement and investigations before they are reliable. Bioreductions are the main topic because of their widespread application in organic synthesis and their versatility in creating stereogenic centers in chiral molecules. Annotation ©2014 Book News, Inc., Portland, OR (booknews.com)

This useful reference focuses on the currently available toolbox of bio-catalysed reductions of C=O, C=C and formal C=N bonds to show which transformations can be reliably used in manufacturing processes and which still require improvements.

Following an introductory chapter, chapters 2-4 present the synthetic strategies that are currently available for the reduction of C=C and C=O bonds and for reductive amination, by means of whole-cell catalysts and isolated enzymes. Chapters 5-7 go on to describe the improvements achieved thus far, illustrating the current versatility of enzymes in organic synthesis. Chapters 8-12 present the improvements brought about by the optimization of reaction conditions, and the use of particular synthetic sequences. The final chapter describes practical applications of bio-reductions for the synthesis of active pharmaceutical ingredients.

With its excellent and comprehensive overview, this book will be of great interest to those working in academia and industry.


From the contents:
* Development of Sustainable Biocatalyzed Reduction Processes for Organic Chemists
* Reductases: From Natural Diversity to Biocatalysis and Emerging Enzymatic Activities.
* Synthetic Strategies Based on C=C Bioreductions
* Synthetic Strategies Based on C=O Bioreductions
* Development of Novel Enzymes for the Improved Reduction of C=C Double Bonds
* Development of Novel Enzymes for the Improved Reduction of C=O Double Bonds
* Synthetic Applications of Aminotransferases
* Strategies for Cofactor Regeneration in Biocatalyzed Reductions
* Effects of Solvent System and Substrate Loading in Bioreduction
* Perspectives in the Use of In-Situ Product Removal (ISPR) Techniques in Bioreductions
* Multi-Enzymatic Cascade Reactions Based on Reduction Processes
* Relevant Practical Applications of Bioreduction Processes in the Synthesis of Active Pharmaceutical Ingredients
Preface xiii
List of Contributors
xv
1 Development of Sustainable Biocatalytic Reduction Processes for Organic Chemists
1(26)
Roland Wohlgemuth
1.1 Introduction
1(2)
1.2 Biocatalytic Reductions of C=0 Double Bonds
3(5)
1.2.1 Biocatalytic Reductions of Ketones to Alcohols
3(3)
1.2.2 Biocatalytic Reductions of Aldehydes to Alcohols
6(2)
1.2.3 Biocatalytic Reductions of Carboxylic Acids to Aldehydes
8(1)
1.2.4 Biocatalytic Reductions of Carboxylic Acids to Alcohols
8(1)
1.3 Biocatalytic Reductions of C=C Double Bonds
8(2)
1.4 Biocatalytic Reductions of lmines to Amines
10(2)
1.5 Biocatalytic Reductions of Nitriles to Amines
12(1)
1.6 Biocatalytic Deoxygenation Reactions
12(2)
1.7 Emerging Reductive Biocatalytic Reactions
14(2)
1.8 Reaction Engineering for Biocatalytic Reduction Processes
16(1)
1.9 Summary and Outlook
17(10)
References
18(9)
2 Reductases: From Natural Diversity to Established Biocatalysis and to Emerging Enzymatic Activities
27(22)
Elena Fernandez-Alvaro
Pablo Domlnguez de Maria
2.1 Reductases: Natural Occurrence and Context for Biocatalysis
27(9)
2.2 Emerging Cases of Reductases in Biocatalysis
36(8)
2.2.1 Motivation: The Quest for Novel Enzymes and Reactivities
36(1)
2.2.2 Imine Reductases
36(2)
2.2.3 Nitrile Reductases: The Next Member in the Portfolio of Reductases?
38(3)
2.2.4 Other Emerging N-Based Enzymatic Reductions: Nitroalkenes and Oximes
41(1)
2.2.5 From Carboxylic Acids to Alcohols: Biocatalysis
42(2)
2.3 Concluding Remarks
44(5)
References
44(5)
3 Synthetic Strategies Based on C=C Bioreductions for the Preparation of Biologically Active Molecules
49(36)
Francesco C. Catti
Fabio Parmeggiani
Alessandro Sacchetti
3.1 Introduction
49(4)
3.2 Bioreduction of α β-Unsaturated Carbonyl Compounds
53(12)
3.2.1 Aldehydes
54(7)
3.2.2 Ketones
61(4)
3.3 Bioreduction of Nitroolefins
65(3)
3.4 Bioreduction of α,β - 3-Unsaturated Carboxylic Acids and Derivatives
68(6)
3.4.1 Monoesters and Lactones
68(3)
3.4.2 Diesters
71(2)
3.4.3 Carboxylic Acids
73(1)
3.4.4 Anhydrides and Imides
73(1)
3.5 Bioreduction of α,β - P-Unsaturated Nitriles
74(2)
3.6 Concluding Remarks
76(9)
References
77(8)
4 Synthetic Strategies Based on C=O Bioreductions for the Preparation of Biologically Active Molecules
85(28)
Anlbal Cuetos
Alba Diaz-Rodriguez
Ivan Lavandera
4.1 Introduction
85(2)
4.2 Synthesis of Biologically Active Compounds through C=O Bioreduction
87(12)
4.2.1 Keto Esters
87(1)
4.2.1.1 α-Keto Esters
87(2)
4.2.1.2 β-Keto Esters
89(1)
4.2.1.3 Other Keto Esters
89(1)
4.2.2 Diketones
90(1)
4.2.3 α-Halo Ketones
91(3)
4.2.4 (Hetero) Cyclic Ketones
94(2)
4.2.5 "Bulky-Bulky" Ketones
96(2)
4.2.6 Miscellaneous
98(1)
4.3 Other Strategies to Construct Biologically Active Compounds
99(7)
4.4 Summary and Outlook
106(7)
References
107(6)
5 Protein Engineering: Development of Novel Enzymes for the Improved Reduction of C=C Double Bonds
113(26)
Sabrina Kille
Manfred T. Reetz
5.1 Introduction
113(1)
5.2 The Protein Engineering Process and Employed Mutagenesis Methods
114(3)
5.3 Examples of Rational Design of Old Yellow Enzymes
117(1)
5.4 Evolving Old Yellow Enzymes (OYEs)
117(17)
5.4.1 Evolving OYE1 as a Catalyst in the Stereoselective Reduction of 3-AIkyl-2-cyclohexenone Derivatives and Baylis-Hillman Adducts
119(4)
5.4.2 Evolving the Pentaervthritol Tetranitrate (PETN) Reductase as a Catalyst in the Reduction of α,β(3-Unsaturated Carbonyl Compounds and E-Nitroolefins
123(6)
5.4.3 Evolving Nicotinamide-Dependent 2-Cyclohexenone Reductase (NCR) from Zymomonas mobilis for the Reduction of α,β-Unsaturated Ketones
129(1)
5.4.4 Evolving the YqjM from Bacillus subtilis for Enhanced Activitv, Substrate Scope, and Stereoselectivity in the Reduction of α,β(3-Unsaturated Ketones
129(5)
5.5 Conclusions and Perspectives
134(5)
References
134(5)
6 Protein Engineering: Development of Novel Enzymes for the Improved Reduction of C=0 Double Bonds
139(48)
Nobuya Itoh
Yoshihide Makino
6.1 Introduction
139(1)
6.2 Detailed Characterization of PAR
140(11)
6.2.1 Location of PAR in Styrene Metabolic Pathway
140(2)
6.2.2 Physicochemical Properties of PAR
142(5)
6.2.3 Enzymatic Properties of PAR
147(4)
6.2.4 Docking Model Construction of PAR
151(1)
6.3 Detailed Characterization of LSADH
151(6)
6.3.1 Screening of LSADH from Styrene-Assimilating Soil Microorganisms
151(2)
6.3.2 Physicochemical Properties of LSADH
153(1)
6.3.3 Enzymatic Properties of LSADH
153(4)
6.4 Engineering of PAR for Increasing Activity in 2-Propanol/Water Medium
157(8)
6.4.1 Construction of Sar268 Mutant
157(3)
6.4.2 Construction of HAR1 Mutant
160(1)
6.4.3 Characterization of Sar268 and HAR1
161(4)
6.5 Application of Whole-Cell Biocatalysts Possessing Mutant PARs and LSADH
165(7)
6.5.1 E. coli Whole-Cell Biocatalysts Possessing Mutant PARs and LSADH
165(3)
6.5.2 Application of Immobilized E. coli Whole-Cell Catalysts to Continuous Production of Chiral Alcohol
168(3)
6.5.3 Application of Immobilized E. coli Whole-Cell Catalysts (LASDH) for Regenerating NADH with IPA
171(1)
6.6 Engineering of (3-Keto Ester Reductase (KER) for Raising Thermal Stability and Stereoselectivity
172(5)
6.6.1 Enzymatic Properties of KER
172(3)
6.6.2 Engineering of KER and Characterization of Mutant Enzymes
175(2)
6.7 New Approach for Engineering or Obtaining Useful ADHs/ Reductases
177(10)
6.7.1 Engineering the Coenzyme Dependency of Ketol-Acid Reductoisomerase (KARI)
177(1)
6.7.2 Engineering Substrate- and Stereospecificity of Reductases by Structure-Guided Method
178(1)
6.7.3 Engineering Database: Systematic Information of Sequence-Structure-Function
179(1)
6.7.4 Metagenomics
180(1)
References
181(6)
7 Synthetic Applications of Aminotransferases for the Preparation of Biologically Active Molecules
187(22)
Sachin Pannuri
Sanjay Kamat
Abraham R. Martin-Garcia
7.1 Introduction
187(5)
7.1.1 Aminotransferases
187(1)
7.1.2 Transamination Reaction
188(1)
7.1.3 Stereoselectivity of Aminotransferases
189(3)
7.2 Applications
192(4)
7.2.1 Biotransformation Process
192(3)
7.2.2 Biologically Active Molecules
195(1)
7.2.3 Process Economy
196(1)
7.3 Challenges
196(7)
7.3.1 Substrate Specificity
197(1)
7.3.2 Improving Reaction Yield
197(3)
7.3.3 Process Scale-Up
200(3)
7.4 Future Research Needs
203(1)
7.5 Conclusions
203(6)
References
204(5)
8 Strategies for Cofactor Regeneration in Biocatalyzed Reductions
209(30)
Selin Kara
Joerg H. Schrittwieser
Frank Hollmann
8.1 Introduction: NAD (P) H as the Universal Reductant in Reduction Biocatalysis
209(1)
8.2 The Most Relevant Cofactor Regeneration Approaches - and How to Choose the Most Suitable One
210(15)
8.2.1 Electrochemical Regeneration of NAD (P) H
212(1)
8.2.2 H2 as Reducing Agent
213(2)
8.2.3 Formates as Reducing Agents
215(3)
8.2.4 Phosphites as Stoichiometric Reductants
218(1)
8.2.5 Alcohols as Stoichiometric Reductants
218(5)
8.2.6 Glucose as Stoichiometric Reductant
223(2)
8.3 Coupling the Reduction Reaction to a Regeneration Reaction Producing a Valuable Compound
225(3)
8.4 Avoiding NAD (P) H: Does It Also Mean Avoiding the Challenge?
228(3)
8.5 Conclusions 230 References
231(8)
9 Solvent Effects in Bioreductions
239(24)
Yan Ni
Hui-Lei Yu
Jian-He Xu
9.1 Introduction
239(1)
9.2 Solvent Systems for Biocatalytic Reductions
240(15)
9.2.1 Bioreduction in Aqueous Systems
240(1)
9.2.2 Bioreduction in Monophasic Aqueous-Organic Systems
241(2)
9.2.3 Bioreduction in Biphasic Aqueous-Organic Systems
243(2)
9.2.4 Bioreduction in Micro- or Nonaqueous Systems
245(2)
9.2.5 Bioreduction in Nonconventional Media
247(1)
9.2.5.1 Ionic Liquids
247(3)
9.2.5.2 Supercritical Fluids
250(1)
9.2.5.3 Combining ILs and SFs
251(1)
9.2.5.4 Gas-Phase Media
252(2)
9.2.5.5 Reverse Micelles
254(1)
9.3 Solvent Control of Enzyme Selectivity
255(2)
9.4 Concluding Remarks
257(6)
References
258(5)
10 Application of In situ Product Removal (ISPR) Technologies for Implementation and Scale-Up of Biocatalytic Reductions
263(22)
John M. Woodley
10.1 Introduction
263(1)
10.2 Process Requirements for Scale-Up
263(2)
10.3 Bioreduction Process Engineering
265(2)
10.4 In situ Product Removal
267(2)
10.5 Biocatalyst Format
269(4)
10.5.1 Whole-Cell Processes
271(1)
10.5.2 Isolated Enzyme Processes
272(1)
10.6 Selected Examples
273(3)
10.6.1 ISPR with Resins
273(1)
10.6.2 ISPR with Solvent Extraction
274(1)
10.6.3 ISPR with Crystallization
274(1)
10.6.4 Removal of Acetone
275(1)
10.7 Future Outlook
276(4)
10.7.1 Protein Engineering
276(1)
10.7.2 Choice of Methods
277(1)
10.7.3 Process Integration
278(2)
10.8 Conclusions
280(5)
References
280(5)
11 Bioreductions in Multienzymatic One-Pot and Cascade Processes
285(22)
Daniela Monti
Erica E. Ferrandi
11.1 Introduction
285(2)
11.2 Coupled Oxidation and Reduction Reactions
287(5)
11.3 Consecutive and Cascade One-Pot Reductions
292(4)
11.4 Cascade Processes, Including Biocatalyzed Reductive Amination Steps
296(6)
11.5 Other Examples of Multienzymatic Cascade Processes, Including Bioreductive Reactions
302(5)
References
304(3)
12 Dynamic Kinetic Resolutions Based on Reduction Processes
307(22)
Dimitris Kalaitzakis
loulia Smonou
12.1 Introduction
307(2)
12.2 Cyclic Compounds
309(4)
12.3 Acyclic a-Substituted-B-Keto Esters and 2-Substituted-l,3-Diketones
313(9)
12.4 Acyclic Ketones and Aldehydes
322(1)
12.5 Conclusions
323(6)
References
324(5)
13 Relevant Practical Applications of Bioreduction Processes in the Synthesis of Active Pharmaceutical Ingredients
329(46)
Gabor Tasnadi
Melanie Hall
13.1 Introduction
329(8)
13.2 Ketoreductases
337(10)
13.2.1 Ethyl4-chloro-3-hydroxybutanoate
337(1)
13.2.2 Atorvastatin
338(1)
13.2.3 Montelukast
339(1)
13.2.4 Ramatroban
340(1)
13.2.5 Ezetimibe
341(1)
13.2.6 Profens
342(1)
13.2.7 Atazanavir
343(1)
13.2.8 Chemokine Receptor Inhibitor
343(1)
13.2.9 Duloxetin
344(1)
13.2.10 6-Hydroxybuspirone
345(1)
13.2.11 LY 300164
346(1)
13.2.12 Paclitaxel
346(1)
13.3 Ene Reductases
347(8)
13.3.1 Levodione
347(1)
13.3.2 (+)-Dihydrocarvone
348(1)
13.3.3 Butyrolactone - Jasplakinolide and Amphidinolides
348(1)
13.3.4 (R)-Flurbiprofen
349(1)
13.3.5 Ethyl (S)-2-ethoxy-3-(4-methoxyphenyl) propanoate -Tesaglitazar
350(1)
13.3.6 Methyl (Z)-2-bromocrotonate -- Antidiabetic Drug Candidates
350(1)
13.3.7 Roche Ester
351(1)
13.3.8 Human Neurokinin-1 Receptor Antagonists
352(1)
13.3.9 Asymmetric Synthesis of Amino Acid Derivatives
353(2)
13.4 Others
355(6)
13.4.1 Amino Acid Dehydrogenase-Catalyzed Processes
355(1)
13.4.1.1 Saxagliptin
355(1)
13.4.1.2 Omapatrilat
356(1)
13.4.1.3 Inogatran
357(1)
13.4.1.4 Corticotropin-releasing Factor-1 (CRF-1) Receptor Antagonist
357(1)
13.4.1.5 AG7088
358(1)
13.4.2 Pyrrolo[ 2,l-c][ l,4]benzodiazepines (Antitumor Agents)
358(1)
13.4.3 Dihydrofolate Reductase
359(1)
13.4.4 β-Carbolines
359(2)
13.5 Bioreduction-Supported Processes
361(2)
13.6 Outlook
363(12)
References
365(10)
Index 375
Elisabetta Brenna received her laurea (1989) and PhD (1993) in chemistry from the University of Milan. In 1996, she became Assistant Professor at Politecnico di Milano, where she is now Associate Professor. Her main scientific interests are the enzyme-mediated synthesis of the single enantiomers of chiral biologically active compounds, and the use of the SNIF NMR technique for tracing back the synthetic history of active pharmaceutical ingredients and synthetic flavourings. She is author of more than 120 publications in international journals.