Preface |
|
xi | |
Guide to Different Topics of the Book |
|
xiii | |
About the Authors |
|
xv | |
Part One Introduction to Systems Biology |
|
1 | (330) |
|
|
3 | (12) |
|
1.1 Biology in Time and Space |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
4 | (1) |
|
1.2.2 Purpose and Adequateness of Models |
|
|
5 | (1) |
|
1.2.3 Advantages of Computational Modeling |
|
|
5 | (1) |
|
1.3 Basic Notions for Computational Models |
|
|
6 | (2) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.3.4 Variables, Parameters, and Constants |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.6 Model Classification |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.3.8 Model Assignment Is Not Unique |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (3) |
|
|
9 | (2) |
|
1.7.2 Saccharomyces cerevisiae |
|
|
11 | (1) |
|
1.7.3 Caenorhabditis elegans |
|
|
11 | (1) |
|
1.7.4 Drosophila melanogaster |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (2) |
|
|
14 | (1) |
|
2 Modeling of Biochemical Systems |
|
|
15 | (8) |
|
2.1 Overview of Common Modeling Approaches for Biochemical Systems |
|
|
15 | (2) |
|
2.2 ODE Systems for Biochemical Networks |
|
|
17 | (4) |
|
2.2.1 Basic Components of ODE Models |
|
|
18 | (1) |
|
2.2.2 Illustrative Examples of ODE Models |
|
|
18 | (3) |
|
|
21 | (1) |
|
|
21 | (2) |
|
3 Structural Modeling and Analysis of Biochemical Networks |
|
|
23 | (16) |
|
3.1 Structural Analysis of Biochemical Systems |
|
|
24 | (6) |
|
|
24 | (1) |
|
3.1.2 Information Encoded in the Stoichiometric Matrix N |
|
|
25 | (2) |
|
|
27 | (1) |
|
3.1.4 Elementary Flux Modes and Extreme Pathways |
|
|
27 | (2) |
|
3.1.5 Conservation Relations - Null Space of NT |
|
|
29 | (1) |
|
3.2 Constraint-Based Flux Optimization |
|
|
30 | (5) |
|
3.2.1 Flux Balance Analysis |
|
|
31 | (1) |
|
3.2.2 Geometric Interpretation of Flux Balance Analysis |
|
|
31 | (1) |
|
3.2.3 Thermodynamic Constraints |
|
|
31 | (1) |
|
3.2.4 Applications and Tests of the Flux Optimization Paradigm |
|
|
32 | (1) |
|
3.2.5 Extensions of Flux Balance Analysis |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (2) |
|
4 Kinetic Models of Biochemical Networks: Introduction |
|
|
39 | (24) |
|
4.1 Reaction Kinetics and Thermodynamics |
|
|
39 | (11) |
|
4.1.1 Kinetic Modeling of Enzymatic Reactions |
|
|
39 | (1) |
|
4.1.2 The Law of Mass Action |
|
|
40 | (1) |
|
4.1.3 Reaction Thermodynamics |
|
|
40 | (2) |
|
4.1.4 Michaelis-Menten Kinetics |
|
|
42 | (2) |
|
4.1.5 Regulation of Enzyme Activity by Effectors |
|
|
44 | (4) |
|
4.1.6 Generalized Mass Action Kinetics |
|
|
48 | (1) |
|
4.1.7 Approximate Kinetic Formats |
|
|
48 | (1) |
|
4.1.8 Convenience Kinetics and Modular Rate Laws |
|
|
49 | (1) |
|
4.2 Metabolic Control Analysis |
|
|
50 | (11) |
|
4.2.1 The Coefficients of Control Analysis |
|
|
51 | (2) |
|
4.2.2 The Theorems of Metabolic Control Theory |
|
|
53 | (2) |
|
4.2.3 Matrix Expressions for Control Coefficients |
|
|
55 | (3) |
|
4.2.4 Upper Glycolysis as Realistic Model Example |
|
|
58 | (1) |
|
4.2.5 Time-Dependent Response Coefficients |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
5 Data Formats, Simulation Techniques, and Modeling Tools |
|
|
63 | (24) |
|
5.1 Simulation Techniques and Tools |
|
|
63 | (9) |
|
5.1.1 Differential Equations |
|
|
63 | (1) |
|
5.1.2 Stochastic Simulations |
|
|
64 | (1) |
|
|
65 | (7) |
|
5.2 Standards and Formats for Systems Biology |
|
|
72 | (3) |
|
5.2.1 Systems Biology Markup Language |
|
|
72 | (2) |
|
|
74 | (1) |
|
5.2.3 Systems Biology Graphical Notation |
|
|
74 | (1) |
|
5.3 Data Resources for Modeling of Cellular Reaction Systems |
|
|
75 | (3) |
|
5.3.1 General-Purpose Databases |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
5.4 Sustainable Modeling and Model Semantics |
|
|
78 | (5) |
|
5.4.1 Standards for Systems Biology Models |
|
|
78 | (1) |
|
5.4.2 Model Semantics and Model Comparison |
|
|
78 | (2) |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
85 | (2) |
|
6 Model Fitting, Reduction, and Coupling |
|
|
87 | (34) |
|
|
88 | (11) |
|
6.1.1 Regression, Estimators, and Maximal Likelihood |
|
|
88 | (2) |
|
6.1.2 Parameter Identifiability |
|
|
90 | (1) |
|
|
91 | (1) |
|
6.1.4 Bayesian Parameter Estimation |
|
|
92 | (2) |
|
6.1.5 Probability Distributions for Rate Constants |
|
|
94 | (3) |
|
6.1.6 Optimization Methods |
|
|
97 | (2) |
|
|
99 | (5) |
|
6.2.1 What Is a Good Model? |
|
|
99 | (1) |
|
6.2.2 The Problem of Model Selection |
|
|
100 | (2) |
|
6.2.3 Likelihood Ratio Test |
|
|
102 | (1) |
|
|
102 | (1) |
|
6.2.5 Bayesian Model Selection |
|
|
103 | (1) |
|
|
104 | (6) |
|
6.3.1 Model Simplification |
|
|
104 | (1) |
|
6.3.2 Reduction of Fast Processes |
|
|
105 | (2) |
|
6.3.3 Quasi-Equilibrium and Quasi-Steady State |
|
|
107 | (1) |
|
6.3.4 Global Model Reduction |
|
|
108 | (2) |
|
6.4 Coupled Systems and Emergent Behavior |
|
|
110 | (6) |
|
6.4.1 Modeling of Coupled Systems |
|
|
111 | (2) |
|
6.4.2 Combining Rate Laws into Models |
|
|
113 | (1) |
|
6.4.3 Modular Response Analysis |
|
|
113 | (1) |
|
6.4.4 Emergent Behavior in Coupled Systems |
|
|
114 | (1) |
|
6.4.5 Causal Interactions and Global Behavior |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (2) |
|
|
119 | (2) |
|
7 Discrete, Stochastic, and Spatial Models |
|
|
121 | (24) |
|
|
122 | (5) |
|
|
122 | (2) |
|
|
124 | (3) |
|
7.2 Stochastic Modeling of Biochemical Reactions |
|
|
127 | (6) |
|
7.2.1 Chance in Biochemical Reaction Systems |
|
|
127 | (2) |
|
7.2.2 The Chemical Master Equation |
|
|
129 | (1) |
|
7.2.3 Stochastic Simulation |
|
|
129 | (1) |
|
7.2.4 Chemical Langevin Equation and Chemical Noise |
|
|
130 | (2) |
|
7.2.5 Dynamic Fluctuations |
|
|
132 | (1) |
|
7.2.6 From Stochastic to Deterministic Modeling |
|
|
133 | (1) |
|
|
133 | (9) |
|
7.3.1 Types of Spatial Models |
|
|
134 | (1) |
|
|
135 | (1) |
|
7.3.3 Reaction-Diffusion Systems |
|
|
136 | (2) |
|
7.3.4 Robust Pattern Formation in Embryonic Development |
|
|
138 | (1) |
|
7.3.5 Spontaneous Pattern Formation |
|
|
139 | (1) |
|
7.3.6 Linear Stability Analysis of the Activator-Inhibitor Model |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
8 Network Structure, Dynamics, and Function |
|
|
145 | (26) |
|
8.1 Structure of Biochemical Networks |
|
|
146 | (6) |
|
|
147 | (1) |
|
8.1.2 Scale-Free Networks |
|
|
148 | (1) |
|
8.1.3 Connectivity and Node Distances |
|
|
149 | (1) |
|
8.1.4 Network Motifs and Significance Tests |
|
|
150 | (1) |
|
8.1.5 Explanations for Network Structures |
|
|
151 | (1) |
|
8.2 Regulation Networks and Network Motifs |
|
|
152 | (8) |
|
8.2.1 Structure of Transcription Networks |
|
|
153 | (3) |
|
8.2.2 Regulation Edges and Their Steady-State Response |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (2) |
|
8.3 Modularity and Gene Functions |
|
|
160 | (6) |
|
8.3.1 Cell Functions Are Reflected in Structure, Dynamics, Regulation, and Genetics |
|
|
160 | (2) |
|
8.3.2 Metabolics Pathways and Elementary Modes |
|
|
162 | (1) |
|
8.3.3 Epistasis Can Indicate Functional Modules |
|
|
163 | (1) |
|
8.3.4 Evolution of Function and Modules |
|
|
163 | (2) |
|
8.3.5 Independent Systems as a Tacit Model Assumption |
|
|
165 | (1) |
|
8.3.6 Modularity and Biological Function Are Conceptual Abstractions |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (2) |
|
|
169 | (2) |
|
|
171 | (38) |
|
9.1 Mechanisms of Gene Expression Regulation |
|
|
171 | (9) |
|
9.1.1 Transcription Factor-Initiated Gene Regulation |
|
|
171 | (2) |
|
9.1.2 General Promoter Structure |
|
|
173 | (1) |
|
9.1.3 Prediction and Analysis of Promoter Elements |
|
|
174 | (2) |
|
9.1.4 Posttranscriptional Regulation through microRNAs |
|
|
176 | (4) |
|
9.2 Dynamic Models of Gene Regulation |
|
|
180 | (7) |
|
9.2.1 A Basic Model of Gene Expression and Regulation |
|
|
180 | (3) |
|
9.2.2 Natural and Synthetic Gene Regulatory Networks |
|
|
183 | (3) |
|
9.2.3 Gene Expression Modeling with Stochastic Equations |
|
|
186 | (1) |
|
9.3 Gene Regulation Functions |
|
|
187 | (9) |
|
9.3.1 The Lac Operon in E. coli |
|
|
187 | (1) |
|
9.3.2 Gene Regulation Functions Derived from Equilibrium Binding |
|
|
188 | (1) |
|
9.3.3 Thermodynamic Models of Promoter Occupancy |
|
|
189 | (2) |
|
9.3.4 Gene Regulation Function of the Lac Promoter |
|
|
191 | (1) |
|
9.3.5 Inferring Transcription Factor Activities from Transcription Data |
|
|
192 | (2) |
|
9.3.6 Network Component Analysis |
|
|
194 | (2) |
|
9.3.7 Correspondences between mRNA and Protein Levels |
|
|
196 | (1) |
|
9.4 Fluctuations in Gene Expression |
|
|
196 | (7) |
|
9.4.1 Stochastic Model of Transcription and Translation |
|
|
197 | (3) |
|
9.4.2 Intrinsic and Extrinsic Variability |
|
|
200 | (2) |
|
9.4.3 Temporal Fluctuations in Gene Cascades |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (2) |
|
|
207 | (2) |
|
10 Variability, Robustness, and Information |
|
|
209 | (32) |
|
10.1 Variability and Biochemical Models |
|
|
210 | (7) |
|
10.1.1 Variability and Uncertainty Analysis |
|
|
210 | (2) |
|
|
212 | (1) |
|
10.1.3 Elasticity Sampling |
|
|
213 | (1) |
|
10.1.4 Propagation of Parameter Variability in Kinetic Models |
|
|
214 | (2) |
|
10.1.5 Models with Parameter Fluctuations |
|
|
216 | (1) |
|
10.2 Robustness Mechanisms and Scaling Laws |
|
|
217 | (12) |
|
10.2.1 Robustness in Biochemical Systems |
|
|
218 | (1) |
|
10.2.2 Robustness by Backup Elements |
|
|
219 | (1) |
|
|
219 | (3) |
|
10.2.4 Perfect Robustness by Structure |
|
|
222 | (2) |
|
|
224 | (3) |
|
10.2.6 Time Scaling, Summation Laws, and Robustness |
|
|
227 | (1) |
|
10.2.7 The Role of Robustness in Evolution and Modeling |
|
|
228 | (1) |
|
10.3 Adaptation and Exploration Strategies |
|
|
229 | (7) |
|
10.3.1 Information Transmission in Signaling Pathways |
|
|
230 | (1) |
|
10.3.2 Adaptation and Fold-Change Detection |
|
|
230 | (1) |
|
10.3.3 Two Adaptation Mechanisms: Sensing and Random Switching |
|
|
231 | (1) |
|
10.3.4 Shannon Information and the Value of Information |
|
|
232 | (1) |
|
10.3.5 Metabolic Shifts and Anticipation |
|
|
233 | (1) |
|
10.3.6 Exploration Strategies |
|
|
234 | (2) |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
239 | (2) |
|
11 Optimality and Evolution |
|
|
241 | (44) |
|
11.1 Optimality in Systems Biology Models |
|
|
243 | (12) |
|
11.1.1 Mathematical Concepts for Optimality and Compromise |
|
|
245 | (3) |
|
11.1.2 Metabolism Is Shaped by Optimality |
|
|
248 | (2) |
|
11.1.3 Optimality Approaches in Metabolic Modeling |
|
|
250 | (2) |
|
11.1.4 Metabolic Strategies |
|
|
252 | (1) |
|
11.1.5 Optimal Metabolic Adaptation |
|
|
253 | (2) |
|
11.2 Optimal Enzyme Concentrations |
|
|
255 | (6) |
|
11.2.1 Optimization of Catalytic Properties of Single Enzymes |
|
|
255 | (2) |
|
11.2.2 Optimal Distribution of Enzyme Concentrations in a Metabolic Pathway |
|
|
257 | (2) |
|
11.2.3 Temporal Transcription Programs |
|
|
259 | (2) |
|
11.3 Evolution and Self-Organization |
|
|
261 | (10) |
|
|
261 | (2) |
|
11.3.2 Selection Equations for Biological Macromolecules |
|
|
263 | (2) |
|
11.3.3 The Quasispecies Model: Self-Replication with Mutations |
|
|
265 | (2) |
|
|
267 | (2) |
|
11.3.5 Other Mathematical Models of Evolution: Spin Glass Model |
|
|
269 | (1) |
|
11.3.6 The Neutral Theory of Molecular Evolution |
|
|
270 | (1) |
|
11.4 Evolutionary Game Theory |
|
|
271 | (8) |
|
11.4.1 Social Interactions |
|
|
272 | (1) |
|
|
273 | (1) |
|
11.4.3 Evolutionary Game Theory |
|
|
274 | (1) |
|
11.4.4 Replicator Equation for Population Dynamics |
|
|
274 | (1) |
|
11.4.5 Evolutionarily Stable Strategies |
|
|
275 | (1) |
|
11.4.6 Dynamical Behavior in the Rock-Scissors-Paper Game |
|
|
276 | (1) |
|
11.4.7 Evolution of Cooperative Behavior |
|
|
276 | (2) |
|
11.4.8 Compromises between Metabolic Yield and Efficiency |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
280 | (3) |
|
|
283 | (2) |
|
12 Models of Biochemical Systems |
|
|
285 | (46) |
|
|
285 | (6) |
|
12.1.1 Basic Elements of Metabolic Modeling |
|
|
286 | (1) |
|
12.1.2 Toy Model of Upper Glycolysis |
|
|
286 | (3) |
|
12.1.3 Threonine Synthesis Pathway Model |
|
|
289 | (2) |
|
|
291 | (16) |
|
12.2.1 Function and Structure of Intra- and Intercellular Communication |
|
|
292 | (1) |
|
12.2.2 Receptor-Ligand Interactions |
|
|
293 | (2) |
|
12.2.3 Structural Components of Signaling Pathways |
|
|
295 | (9) |
|
12.2.4 Analysis of Dynamic and Regulatory Features of Signaling Pathways |
|
|
304 | (3) |
|
|
307 | (7) |
|
12.3.1 Steps in the Cycle |
|
|
309 | (1) |
|
12.3.2 Minimal Cascade Model of a Mitotic Oscillator |
|
|
310 | (1) |
|
12.3.3 Models of Budding Yeast Cell Cycle |
|
|
311 | (3) |
|
|
314 | (13) |
|
12.4.1 Evolution of the Aging Process |
|
|
316 | (2) |
|
12.4.2 Using Stochastic Simulations to Study Mitochondrial Damage |
|
|
318 | (5) |
|
12.4.3 Using Delay Differential Equations to Study Mitochondrial Damage |
|
|
323 | (4) |
|
|
327 | (1) |
|
|
327 | (4) |
Part Two Reference Section |
|
331 | (144) |
|
|
333 | (24) |
|
|
334 | (2) |
|
13.2 Molecular Biology of the Cell |
|
|
336 | (9) |
|
13.2.1 Chemical Bonds and Forces Important in Biological Molecules |
|
|
336 | (2) |
|
13.2.2 Functional Groups in Biological Molecules |
|
|
338 | (1) |
|
13.2.3 Major Classes of Biological Molecules |
|
|
338 | (7) |
|
13.3 Structural Cell Biology |
|
|
345 | (6) |
|
13.3.1 Structure and Function of Biological Membranes |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
349 | (1) |
|
|
350 | (1) |
|
13.3.5 Endoplasmic Reticulum and Golgi Complex |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (5) |
|
|
351 | (2) |
|
13.4.2 Processing of the mRNA |
|
|
353 | (1) |
|
|
353 | (2) |
|
13.4.4 Protein Sorting and Posttranslational Modifications |
|
|
355 | (1) |
|
13.4.5 Regulation of Gene Expression |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
14 Experimental Techniques |
|
|
357 | (24) |
|
14.1 Restriction Enzymes and Gel Electrophoresis |
|
|
358 | (1) |
|
14.2 Cloning Vectors and DNA Libraries |
|
|
359 | (2) |
|
14.3 1D and 2D Protein Gels |
|
|
361 | (1) |
|
14.4 Hybridization and Blotting Techniques |
|
|
362 | (2) |
|
|
363 | (1) |
|
|
363 | (1) |
|
|
363 | (1) |
|
14.4.4 In Situ Hybridization |
|
|
364 | (1) |
|
14.5 Further Protein Separation Techniques |
|
|
364 | (1) |
|
|
364 | (1) |
|
14.5.2 Column Chromatography |
|
|
364 | (1) |
|
14.6 Polymerase Chain Reaction |
|
|
365 | (1) |
|
14.7 Next-Generation Sequencing |
|
|
366 | (1) |
|
14.8 DNA and Protein Chips |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
14.10 Yeast Two-Hybrid System |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
|
14.12.1 Microinjection and ES Cells |
|
|
370 | (1) |
|
14.12.2 Genome Editing Using ZFN, TALENs, and CRISPR |
|
|
370 | (1) |
|
|
371 | (1) |
|
14.14 ChIP-on-Chip and ChIP-PET |
|
|
372 | (2) |
|
14.15 Green Fluorescent Protein |
|
|
374 | (1) |
|
14.16 Single-Cell Experiments |
|
|
375 | (1) |
|
14.17 Surface Plasmon Resonance |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
377 | (4) |
|
15 Mathematical and Physical Concepts |
|
|
381 | (64) |
|
|
381 | (5) |
|
|
381 | (3) |
|
|
384 | (2) |
|
|
386 | (5) |
|
15.2.1 Describing Dynamics with Ordinary Differential Equations |
|
|
386 | (2) |
|
15.2.2 Linearization of Autonomous Systems |
|
|
388 | (1) |
|
15.2.3 Solution of Linear ODE Systems |
|
|
388 | (1) |
|
15.2.4 Stability of Steady States |
|
|
388 | (2) |
|
15.2.5 Global Stability of Steady States |
|
|
390 | (1) |
|
|
390 | (1) |
|
|
391 | (14) |
|
15.3.1 Basic Concepts of Probability Theory |
|
|
391 | (5) |
|
15.3.2 Descriptive Statistics |
|
|
396 | (3) |
|
15.3.3 Testing Statistical Hypotheses |
|
|
399 | (2) |
|
|
401 | (3) |
|
15.3.5 Principal Component Analysis |
|
|
404 | (1) |
|
15.4 Stochastic Processes |
|
|
405 | (7) |
|
15.4.1 Chance in Physical Theories |
|
|
405 | (1) |
|
15.4.2 Mathematical Random Processes |
|
|
406 | (1) |
|
15.4.3 Brownian Motion as a Random Process |
|
|
407 | (2) |
|
|
409 | (1) |
|
|
410 | (1) |
|
15.4.6 Jump Processes in Continuous Time |
|
|
410 | (1) |
|
15.4.7 Continuous Random Processes |
|
|
411 | (1) |
|
15.4.8 Moment-Generating Functions |
|
|
412 | (1) |
|
15.5 Control of Linear Dynamical Systems |
|
|
412 | (5) |
|
15.5.1 Linear Dynamical Systems |
|
|
413 | (1) |
|
15.5.2 System Response and Linear Filters |
|
|
414 | (1) |
|
15.5.3 Random Fluctuations and Spectral Density |
|
|
415 | (1) |
|
15.5.4 The Gramian Matrices |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
15.6 Biological Thermodynamics |
|
|
417 | (9) |
|
15.6.1 Microstate and Statistical Ensemble |
|
|
417 | (1) |
|
15.6.2 Boltzmann Distribution and Free Energy |
|
|
418 | (1) |
|
|
419 | (2) |
|
15.6.4 Equilibrium Constant and Energies |
|
|
421 | (1) |
|
15.6.5 Chemical Reaction Systems |
|
|
422 | (2) |
|
15.6.6 Nonequilibrium Reactions |
|
|
424 | (1) |
|
15.6.7 The Role of Thermodynamics in Systems Biology |
|
|
425 | (1) |
|
15.7 Multivariate Statistics |
|
|
426 | (15) |
|
15.7.1 Planning and Designing Experiments for Case-Control Studies |
|
|
426 | (1) |
|
15.7.2 Tests for Differential Expression |
|
|
427 | (1) |
|
|
428 | (1) |
|
15.7.4 ROC Curve Analysis |
|
|
429 | (1) |
|
15.7.5 Clustering Algorithms |
|
|
430 | (5) |
|
15.7.6 Cluster Validation |
|
|
435 | (1) |
|
15.7.7 Overrepresentation and Enrichment Analyses |
|
|
436 | (2) |
|
15.7.8 Classification Methods |
|
|
438 | (3) |
|
|
441 | (2) |
|
|
443 | (2) |
|
|
445 | (12) |
|
16.1 General-Purpose Data Resources |
|
|
445 | (1) |
|
|
445 | (1) |
|
|
446 | (1) |
|
16.2 Nucleotide Sequence Databases |
|
|
446 | (2) |
|
16.2.1 Data Repositories of the National Center for Biotechnology Information |
|
|
446 | (1) |
|
16.2.2 GenBank/RefSeq/UniGene |
|
|
446 | (1) |
|
|
447 | (1) |
|
16.2.4 EMBL Nucleotide Sequence Database |
|
|
447 | (1) |
|
16.2.5 European Nucleotide Archive |
|
|
447 | (1) |
|
|
447 | (1) |
|
|
448 | (1) |
|
16.3.1 UniProt/Swiss-Prot/TrEMBL |
|
|
448 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
|
449 | (2) |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
451 | (1) |
|
|
451 | (1) |
|
16.6 Enzyme Reaction Kinetics Databases |
|
|
451 | (1) |
|
|
451 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
16.8 Compound and Drug Databases |
|
|
452 | (1) |
|
|
453 | (1) |
|
16.8.2 Guide To Pharmacology |
|
|
453 | (1) |
|
16.9 Transcription Factor Databases |
|
|
453 | (1) |
|
|
453 | (1) |
|
|
453 | (1) |
|
16.9.3 Transcription Factor Encyclopedia |
|
|
454 | (1) |
|
16.10 Microarray and Sequencing Databases |
|
|
454 | (1) |
|
16.10.1 Gene Expression Omnibus |
|
|
454 | (1) |
|
|
454 | (1) |
|
|
455 | (2) |
|
17 Software Tools for Modeling |
|
|
457 | (18) |
|
|
458 | (1) |
|
|
458 | (1) |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
460 | (1) |
|
|
460 | (1) |
|
|
460 | (1) |
|
|
460 | (1) |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
461 | (1) |
|
|
462 | (1) |
|
17.17 Genetic Network Analyzer (GNA) |
|
|
462 | (1) |
|
|
462 | (1) |
|
|
463 | (1) |
|
|
463 | (1) |
|
|
463 | (1) |
|
|
464 | (1) |
|
|
464 | (1) |
|
|
464 | (1) |
|
|
465 | (1) |
|
|
465 | (1) |
|
|
465 | (1) |
|
|
465 | (1) |
|
|
466 | (1) |
|
|
466 | (1) |
|
|
466 | (1) |
|
|
466 | (1) |
|
|
467 | (1) |
|
|
467 | (1) |
|
|
467 | (1) |
|
|
468 | (1) |
|
|
468 | (1) |
|
|
468 | (1) |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
472 | (1) |
|
17.52 Systems Biology Workbench |
|
|
472 | (1) |
|
|
472 | (1) |
|
|
473 | (1) |
|
17.55 Virtual Cell (VCell) |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (1) |
Index |
|
475 | |