Atjaunināt sīkdatņu piekrišanu

E-grāmata: Systems Engineering Models: Theory, Methods, and Applications

(Air Force Institute of Technology, Dayton, Ohio, USA)
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents a comprehensive compilation of practical systems engineering models. The application and recognition of systems engineering is spreading rapidly, however there is no book that addresses the availability and usability of systems engineering models. Notable among the models to be included are the V-Model, DEJI Model, and Waterfall Model. There are other models developed for specific organizational needs, which will be identified and presented in a practical template so that other organizations can learn and use them. A better understanding of the models, through a comprehensive book, will make these models more visible, embraced, and applied across the spectrum.

Visit www.DEJImodel.com for model details.

Features











Covers applications to both small and large problems Displays decomposition of complex problems into smaller manageable chunks Discusses direct considerations of the pertinent constraints that exist in the problem domain Presents systematic linking of inputs to goals and outputs
Preface xiii
Acknowledgments xv
Author xvii
Chapter 1 Systems introduction
1(18)
Introduction
1(6)
INCOSE Systems Engineering Competency Framework
2(2)
Awareness proficiency
4(1)
Supervised practitioner proficiency
4(1)
Practitioner
4(1)
Lead practitioner
4(1)
Expert
4(1)
Systems attributes, factors, and indicators
4(3)
The scope of systems engineering
7(3)
Systems definitions and attributes
10(1)
Systems constraints
11(2)
Systems value modeling
13(3)
References
16(3)
Chapter 2 Model-based systems engineering
19(14)
Introduction
19(1)
What is a model?
19(1)
Elements of MBSE
20(6)
Process improvement in model-based systems
26(5)
Business process reengineering
28(1)
Lean
29(1)
Six Sigma
29(1)
Selecting a methodology
30(1)
References
31(2)
Chapter 3 Human Factors in systems modeling
33(30)
Introduction
33(1)
Elements of Human Factors
34(1)
Cognition
34(1)
Behavior
35(1)
Performance
35(1)
Reliability
36(1)
The benefits of Human Factors
36(1)
A Human Factors conceptual model
36(1)
Long-term memory
37(6)
Types of long-term memory
38(1)
Implications for design
39(1)
Case: power-plant control
40(1)
Working memory
41(1)
Implications for design
42(1)
Case: cockpit checklists
42(1)
Sensation
43(1)
Implications for design
44(1)
Case: industrial dashboards
44(1)
Perception
44(2)
Implications for design
45(1)
Case: in-vehicle navigation systems
45(1)
Attention and mental workload
46(2)
Implications for design
47(1)
Case: warnings
48(1)
Situation awareness
48(2)
Implications for design
49(1)
Case: air-traffic systems
49(1)
Decision-making
50(1)
Diagnosis
50(1)
Choice
51(4)
Decision-making heuristics
53(1)
Implications for design
53(1)
Case: accident investigation
54(1)
Cognitive consequences of design
55(1)
Learning
55(1)
Implications for design
55(1)
Error
56(1)
Implications for design
57(1)
Summary
57(1)
References
58(5)
Chapter 4 Ergonomics in systems design and modeling
63(18)
Introduction
63(1)
The design process
64(15)
Design purposes and outcomes
65(1)
Life cycle
66(1)
Structures, processes, and outcomes
67(3)
Prediction
70(2)
The 6Us and 2Ms
72(1)
A case study in design -- the Hong Kong Mass Transit Railway
73(2)
Qualitative and quantitative design tools
75(1)
Concurrent engineering
76(1)
Communication in the design process
77(2)
Conclusions
79(1)
References
79(2)
Chapter 5 Systems theory for systems modeling
81(18)
Introduction
81(1)
Individual fields of science
82(1)
Systems theory
83(11)
Introduction to theory
83(5)
Systems propositions
88(1)
Axioms of systems theory
88(4)
Construct for systems theory
92(2)
Multidisciplinary implications of systems theory
94(2)
Conclusion
96(1)
References
96(3)
Chapter 6 System-of-systems engineering management for systems modeling
99(30)
Introduction
99(2)
State of knowledge and practice
101(7)
A Systems engineering (SE)
101(3)
B System of Systems Engineering (SoSE)
104(3)
C Analysis of literature review
107(1)
System of Systems Engineering (SOSE) Management
108(9)
A SoS characteristics
109(2)
B Network management
111(6)
Case study of the Integrated Deepwater System (IDS)
117(7)
A Part A: current IDS status
119(1)
B Part B: feedback
119(1)
C Part C: conceptual areas
119(2)
D Part D: distinguishing characteristics and opposing forces
121(3)
Conclusion
124(1)
References
125(4)
Chapter 7 Waterfall model, V-model, spiral model, and other SE models
129(10)
Introduction
129(1)
The waterfall model
129(2)
The V-model
131(2)
Spiral model
133(1)
Defense Acquisitions University SE model
134(1)
Walking skeleton model
135(2)
Object-oriented analysis and design
137(1)
References
138(1)
Chapter 8 The DEJI model of systems engineering
139(12)
Introduction
139(1)
Application to quality system
140(9)
Quality accountability
141(1)
The DEJI model
142(1)
Design of quality
143(2)
Evaluation of quality
145(1)
Justification of quality
146(1)
Earned value technique for earned quality
146(1)
Integration of quality
147(2)
Conclusion
149(1)
References
149(2)
Chapter 9 Vehicle systems modeling
151(16)
Introduction
151(1)
Transient handling characteristics
151(4)
Transient agility
153(1)
Transient stability
153(2)
Transient precision
155(1)
Transient roll support
155(1)
Methods to subjectively evaluate transient handling
155(2)
Low amplitude triangle pulse steer
156(1)
High amplitude triangle pulse steer
156(1)
Ramped step steer
156(1)
Development of robot driven transient test
157(1)
Limitations of current tests
157(1)
Test development using DFSS
158(4)
Develop concept & screening study
158(1)
Optimize design
159(1)
P-Diagram & ideal function
159(1)
Control factors
160(1)
Input signal
160(1)
Output signal
160(1)
Experiment
161(1)
Data analysis/optimization
161(1)
Verification and example uses of the RDT test
162(3)
Summary
165(1)
References
165(2)
Chapter 10 Systems modeling for product design
167(18)
Introduction
167(2)
Literature review
169(2)
MA and its application to collaborative design
171(3)
Proposed framework for collaborative design
171(1)
Pseudo Code
172(2)
Forearm crutch design
174(5)
Design problem formulation
176(1)
Design agent for strength decision
177(1)
Implementation
177(2)
Results and analysis
179(2)
Conclusion
181(1)
References
181(4)
Chapter 11 Dynamic fuzzy systems modeling
185(20)
Introduction -- decision support systems, uncertainties
185(8)
Decision support systems
186(1)
Uncertainty
187(1)
Fuzziness
188(1)
The fuzzy set specifications
189(1)
Information type I Sample of very small size
190(1)
Information type II Linguistic assessment
190(1)
Information type III Single uncertain measured value
191(1)
Information type IV Knowledge based on experience
191(1)
Stochastic-fuzzy models
192(1)
Applications
193(5)
The development model
193(3)
The Optimization of the Fuzzy-Stochastic Development Model
196(1)
Urban transit systems under uncertainty
197(1)
Water resources management under uncertainty
198(1)
Energy planning and management under uncertainty
198(3)
Conclusions
201(1)
References
202(3)
Index 205
Adedeji Badiru is a Professor of Systems Engineering at the Graduate School of Engineering and Management at the Air Force Institute of Technology. He is a registered professional engineer (PE), a certified Project Management Professional (PMP), a Fellow of the Institute of Industrial Engineers, and a Fellow of the Nigerian Academy of Engineering. His areas of interest include mathematical modeling, project modeling, economic analysis, and productivity analysis and improvement. He has been recognized with numerous awards for his teaching, research, service, publications, and managerial accomplishments.