Atjaunināt sīkdatņu piekrišanu

E-grāmata: Tailor-Made and Functionalized Biopolymer Systems: For Drug Delivery and Biomedical Applications

Edited by (Post-doctoral Fellow/International Young Scientist, Shenyang Pharmaceutical University, Shenyang, Liaoning, China), Edited by (Assistant Professor at North Dakota State University, USA.), Edited by (Professor and Chair, North Dakota State University, Farg)
  • Formāts - EPUB+DRM
  • Cena: 322,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Tailor-Made and Functionalized Biopolymer Systems: For Drug Delivery and Biomedical Applications covers the design and application of these functionalized and tailor-made biopolymers and biopolymer systems intended for drug delivery and biomedical applications. Various concepts, design protocols and biomedical applications of tailor-made biopolymer systems are covered, guiding the reader from theoretical knowledge to practical application. Authored by an array of experts from global institutions, this book offers an interdisciplinary approach to how tailor-made biopolymers lead to novel drug delivery and treatment solutions. This will be a useful reference to a broad audience, including biomedical engineers, materials scientists, pharmacologists and chemists.
  • Provides a concise overview of tailor-made and functionalized biopolymer systems for biomedical applications
  • Covers a range of modified biopolymers, biopolymeric composites and biopolymer-based systems in drug delivery, development of artificial organs, diagnostic applications, and more
  • Describes characterization, synthesis and functionalization of biopolymers and biopolymers systems
List of contributors
xv
1 Introduction to tailor-made biopolymers in drug delivery applications
1(32)
Yasir Faraz Abbasi
Parthasarathi Panda
Sanjay Arora
Buddhadev Layek
Hriday Bera
1.1 Introduction
1(1)
1.2 Biopolymers from plant and animal kingdom
2(12)
1.2.1 Polysaccharides
2(8)
1.2.2 Polypeptides
10(4)
1.2.3 Polynucleotides
14(1)
1.3 Chemical modifications of biopolymers
14(5)
1.3.1 Modification approaches of polysaccharides
14(4)
1.3.2 Modification approaches of polypeptides
18(1)
1.4 Tailor-made biopolymers as pharmaceutical excipients
19(5)
1.5 Conclusion
24(9)
References
24(9)
Section 1 Modified biopolymers
33(168)
2 Thiolated biopolymers in drug delivery and biomedical applications
35(18)
Custodiana A. Colmenarez Lobo
Mirta L. Fascio
Norma B. D'Accorso
2.1 Introduction
35(1)
2.2 Thiolated biopolymers in drug delivery applications
36(8)
2.3 Thiolated biopolymers in biomedical applications
44(5)
2.3.1 Medicinal applications
44(1)
2.3.2 Diagnosis
44(1)
2.3.3 Regenerative medicine
45(4)
2.4 Conclusion and future perspectives
49(4)
Acknowledgments
49(1)
References
49(4)
3 Smart biopolymers for controlled drug delivery applications
53(32)
Sanjay Arora
Riddhi Trivedi
Richard N.L. Lamptey
Bivek Chaulagain
Buddhadev Layek
Jagdish Singh
3.1 Introduction
53(2)
3.2 Different types of smart biopolymers
55(19)
3.2.1 Thermosensitive smart polymers
55(2)
3.2.2 Ph-sensitive smart polymers
57(4)
3.2.3 Light-sensitive smart polymers
61(3)
3.2.4 Phase-sensitive smart polymers
64(3)
3.2.5 Bioresponsive smart polymers
67(7)
3.3 Conclusion
74(11)
Acknowledgments
74(1)
References
74(11)
4 Alginate-based systems for protein and peptide delivery
85(30)
Paramita Paul
Gouranga Nandi
Mohammed A. Abosheasha
Hriday Bera
4.1 Introduction
85(1)
4.2 Alginate: sources, physicochemical and biological properties
86(3)
4.2.1 Sources of alginates
86(1)
4.2.2 Physicochemical properties
87(1)
4.2.3 Biological properties
88(1)
4.3 Modifications of alginate for protein and peptide delivery
89(3)
4.3.1 Covalent chemical modifications
89(1)
4.3.2 Polyelectrolyte complexes
89(3)
4.4 Alginate-based systems for protein and peptide delivery
92(14)
4.4.1 Model protein delivery
92(3)
4.4.2 Insulin delivery
95(2)
4.4.3 Angiogenic factor delivery
97(1)
4.4.4 Chemokine delivery
98(4)
4.4.5 Bone morphogenetic protein delivery
102(4)
4.5 Conclusion
106(9)
References
106(9)
5 Chitosan-based polyelectrolyte complexes in biomedical applications
115(40)
Buddhadev Layek
Surajit Das
Shubhajit Paul
5.1 Introduction
115(1)
5.2 Polyelectrolyte complexes
116(3)
5.2.1 Mechanism of polyelectrolyte complexes formation
116(1)
5.2.2 Preparation of PECs and factors influencing the formation and stability of PECs
117(2)
5.3 Applications of chitosan-based polyelectrolyte complexes
119(27)
5.3.1 Drug delivery
119(7)
5.3.2 Gene delivery
126(17)
5.3.3 Tissue engineering
143(3)
5.4 Conclusion
146(9)
References
146(9)
6 Tailor-made cyclodextrin-based nanomaterials as drug carriers
155(46)
Kazi Asraf Ali
Pradyot Roy
Arindam Maity
Pranabesh Chakraborty
6.1 Introduction
155(13)
6.1.1 History
156(1)
6.1.2 Source of cyclodextrins
156(2)
6.1.3 Types and structure of cyclodextrins
158(1)
6.1.4 Properties of cyclodextrins
159(4)
6.1.5 Inclusion complex formation
163(5)
6.2 Modification of cyclodextrins
168(3)
6.2.1 Principle and chemistry of cyclodextrin modification
169(1)
6.2.2 Characterization of modified cyclodextrins
170(1)
6.3 Cyclodextrin-based nanomaterials
171(14)
6.3.1 Preparation of nanomaterials from cyclodextrins and applications
172(1)
6.3.2 Different cyclodextrin-based nanomaterials
173(12)
6.4 Pharmaceutical and biomedical applications of tailor-made CD-based nanomaterials
185(3)
6.5 Conclusion and future prospects
188(13)
References
188(13)
Section 2 Biopolymeric conjugates/composites
201(148)
7 Biopolymer--metal oxide composites in biomedical applications
203(50)
Yasir Faraz Abbasi
Hriday Bera
7.1 Introduction
203(2)
7.2 Applications of biopolymer--metal oxide composites
205(33)
7.2.1 Drug delivery
205(5)
7.2.2 Anticancer, antioxidant, and antimicrobial activities
210(11)
7.2.3 Wound healing and tissue engineering
221(3)
7.2.4 Biosensors, bioimaging, and diagnostics
224(14)
7.3 Conclusion
238(15)
References
239(14)
8 Biopolymer-drug conjugates as biomaterials
253(32)
Haifei Guo
Yasir Faraz Abbasi
Hriday Bera
Mingshi Yang
8.1 Introduction
253(2)
8.2 Biopolymer--drug conjugates
255(19)
8.2.1 Polysaccharide-drug conjugates
255(16)
8.2.2 Polypeptide--drug conjugates
271(3)
8.3 Conclusion
274(11)
References
274(11)
9 Functionalized biopolymer--clay-based composites as drug-cargos
285(28)
Hriday Bera
Motoki Veda
Yoshihiro Ito
9.1 Introduction
285(1)
9.2 Structure and properties of clays
286(2)
9.3 Biopolymer--clay intercalations
288(3)
9.4 Properties of biopolymer--clay-based composites as drug-delivery systems
291(1)
9.4.1 Improvement of clay properties
291(1)
9.4.2 Improvement of polymer properties
291(1)
9.5 Biopolymer--clay-based composites as drug-delivery systems
292(14)
9.5.1 Animal-derived polysaccharide--clay composites
292(5)
9.5.2 Algae-derived polysaccharide--clay composites
297(2)
9.5.3 Plant-derived polysaccharide-clay composites
299(1)
9.5.4 Natural protein--clay composites
300(3)
9.5.5 Biopolymer blend--clay composites
303(3)
9.6 Conclusion
306(7)
References
306(7)
10 Mesoporous silica-biopolymer-based systems in drug delivery applications
313(36)
Suman Saha
Payal Roy
Jui Chakraborty
10.1 Introduction
313(1)
10.2 Classification of MSNs, their structures and properties
314(4)
10.2.1 Two-dimensional mesostructures
315(1)
10.2.2 Three-dimensional mesostructures
315(1)
10.2.3 Classification of mesoporous silica nanoparticles as drug carriers
316(2)
10.3 Different synthesis techniques of mesoporous silica nanoparticles
318(3)
10.3.1 Hydrofhermal synthesis
318(1)
10.3.2 Aerosol-assisted synthesis
318(1)
10.3.3 Modified Stober's synthesis
319(1)
10.3.4 Template-assisted synthesis
319(1)
10.3.5 Microwave synthesis
320(1)
10.3.6 Chemical etching synthesis
321(1)
10.4 Functionalization of mesoporous silica nanoparticles using synthetic polymers/biopolymers
321(3)
10.4.1 Functionalization techniques
322(2)
10.5 Different biopolymer-MSN systems in drug delivery applications
324(7)
10.5.1 Drug delivery for cancer treatment
325(2)
10.5.2 Drug delivery for other disease treatment
327(2)
10.5.3 Gene delivery
329(1)
10.5.4 Drug delivery and bioimaging
330(1)
10.6 Stability and degradation profiles
331(1)
10.7 Biocompatibility, pharmacology, and toxicological profiles
332(2)
10.8 Conclusion, challenges, and future prospects
334(15)
Acknowledgments
334(1)
References
334(15)
Section 3 Modified biopolymer based biomaterials
349(184)
11 Micellar drug-delivery systems based on amphiphilic block and graft polysaccharides
351(32)
Leonard Ionut Atanase
11.1 Introduction
351(1)
11.2 Micellization and drug-loading methods
352(1)
11.3 Characterization techniques of drug-free and drug-loaded micellar systems
353(1)
11.4 Polysaccharide-based micellar drug-delivery systems
354(21)
11.4.1 Chitosan-based micellar drug-delivery systems
354(5)
11.4.2 Cellulose-based micellar drug-delivery systems
359(3)
11.4.3 Dextran-based micellar drug-delivery systems
362(4)
11.4.4 Starch-based micellar drug-delivery systems
366(2)
11.4.5 Alginate-based micellar drug-delivery systems
368(1)
11.4.6 Hyaluronic acid--based micellar drug-delivery systems
369(4)
11.4.7 Miscellaneous polysaccharide-based micellar drug-delivery systems
373(2)
11.5 Conclusions and perspectives
375(8)
References
375(8)
12 Engineering of biopolymer-based nanofibers for medical uses
383(42)
Yang Chen
Hriday Bera
Xiong Guo
Dongmei Cun
Mingshi Yang
12.1 Introduction
383(5)
12.2 Tissue engineering
388(5)
12.3 Drug delivery
393(11)
12.3.1 Drug delivery to the skin
393(6)
12.3.2 Mucosal drug delivery
399(1)
12.3.3 Controlled and sustained drug delivery
400(4)
12.4 Stem cells
404(4)
12.5 Sensors
408(3)
12.6 Conclusion and future perspectives
411(14)
References
412(12)
Further reading
424(1)
13 Engineered protein and protein-polysaccharide cages for drug delivery and therapeutic applications
425(38)
Isha Ghosh
Ujjwal Sahoo
Souvik Basak
13.1 Introduction
425(1)
13.2 Proteins
426(1)
13.3 Protein cages: engineering and therapeutic applications
427(17)
13.3.1 Natural protein cages/scaffolds
430(4)
13.3.2 Engineered protein cages
434(7)
13.3.3 Therapeutic applications of protein cages
441(3)
13.4 Protein-polysaccharide cages: engineering and therapeutic applications
444(9)
13.4.1 Electrostatic precipitation complexes/cages
444(6)
13.4.2 Chemical reaction-mediated complexes/cages
450(2)
13.4.3 Electrospun nanohybrid--mediated complexes/cages
452(1)
13.4.4 Posttranslational modification--aided protein-polysaccharide block copolymer complexes/cages
452(1)
13.5 Conclusion and future perspectives
453(10)
References
455(8)
14 Biopolymeric hydrogels prepared via click chemistry as carriers of therapeutic modalities
463(38)
Rohit Bisht
Pinto Raveena
Sonali Nirmal
Shovanlal Gayen
Gaurav K. Jain
Jayabalan Nirmal
14.1 Introduction
463(2)
14.2 Properties of biopolymeric hydrogels
465(2)
14.2.1 Swelling and solubility
465(1)
14.2.2 Porosity and permeation
466(1)
14.2.3 Drug release
466(1)
14.3 Chemically cross-linked hydrogels
467(12)
14.3.1 Cross-linking by free-radical polymerization
468(1)
14.3.2 Cross-linking by click chemistry
468(11)
14.4 Applications of biopolymeric click hydrogels in drug delivery
479(8)
14.5 Conclusion and future prospects
487(14)
Acknowledgement
493(1)
References
494(7)
15 Biopolymeric nanocrystals in drug delivery and biomedical applications
501(32)
Daphisha Marbaniang
Rajat Subhra Dutta
Niva Rani Gogol
Subhabrata Ray
Bhaskar Mazumder
15.1 Introduction
501(2)
15.2 Generalized synthesis methods for biopolymeric nanocrystals
503(3)
15.2.1 Mineral acid hydrolysis
503(1)
15.2.2 Enzymatic hydrolysis
504(1)
15.2.3 Co-precipitation method
505(1)
15.3 Biopolymeric nanocrystals and their drug delivery and biomedical applications
506(16)
15.3.1 Biopolymeric nanocrystals
506(7)
15.3.2 Reinforcement of biopolymeric nanocrystals with biopolymers and vice versa
513(5)
15.3.3 Biopolymers-assisted drug nanocrystals
518(4)
15.4 Conclusion and future prospects
522(11)
References
522(11)
Section 4 Biopolymeric systems in biomedical applications
533(203)
16 Functionalized biopolymers for colon-targeted drug delivery
535(36)
Yasir Faraz Abbasi
Syed Muhammad Farid Hasan
16.1 Introduction
535(3)
16.2 Biopolymeric systems as colon-targeted drug carriers
538(21)
16.2.1 Plant-derived polysaccharides
538(9)
16.2.2 Animal-derived polysaccharides
547(4)
16.2.3 Algae-and microbial-derived polysaccharides
551(4)
16.2.4 Plant-and animal-derived polypeptides
555(4)
16.3 Conclusion
559(12)
References
559(12)
17 Modified biopolymer-based systems for drug delivery to the brain
571(42)
Abhimanyu Thakur
Rakesh Kumar Sidu
Isha Gaurav
Kumari Sweta
Prosenjit Chakraborty
Sudha Thakur
17.1 Introduction
571(2)
17.2 BBB and other common hurdles in brain drug delivery
573(1)
17.3 Brain drug delivery by invasive methods
574(2)
17.4 Brain drug delivery by the noninvasive methods
576(6)
17.4.1 Chemical modification
576(1)
17.4.2 Intranasal route
576(1)
17.4.3 Aptamer
577(1)
17.4.4 Extracellular vesicles
577(1)
17.4.5 Ultrasound
578(1)
17.4.6 Photodynamic effect
579(1)
17.4.7 Extracorporeal Shockwave
580(1)
17.4.8 Laser-activated perfluorocarbon nanodroplets
580(1)
17.4.9 Nanoformulations
580(2)
17.5 Biopolymer-based systems for targeted drug delivery to the brain
582(14)
17.5.1 Plant-derived polysaccharides
582(3)
17.5.2 Animal-derived polysaccharides
585(5)
17.5.3 Algae-derived and microbial polysaccharides
590(3)
17.5.4 Polypeptides
593(3)
17.6 Conclusion and future perspectives
596(17)
Contributions
598(1)
References
598(15)
18 Modified biopolymer-based chronotherapeutic drug-delivery systems
613(22)
Somasree Ray
Shalmoli Seth
18.1 Introduction
613(1)
18.1.1 Clinical relevance of chronotherapeutic drug-delivery systems
613(1)
18.2 Concepts and terminologies used in chronotherapeutics
614(1)
18.2.1 Period, level, amplitude, and phase
614(1)
18.3 Common disease states under chronotherapy
615(2)
18.3.1 Cardiovascular disease
615(1)
18.3.2 Asthma
616(1)
18.3.3 Pain
616(1)
18.3.4 Diabetes
616(1)
18.3.5 Gastric ulcer
617(1)
18.3.6 Cancer
617(1)
18.4 Drug-delivery strategies as chronopharmaceuticals
617(1)
18.4.1 Chronotherapeutics
617(1)
18.4.2 Ideal characteristics of chronotherapeutic drug-delivery systems
618(1)
18.4.3 Different techniques used to develop chronopharmaceuticals
618(1)
18.5 Biopolymer-based drug-delivery strategies as chronopharmaceuticals
618(12)
18.5.1 Hydrogels
622(1)
18.5.2 Reservoir system based on swellable/erodible natural polymers
623(4)
18.5.3 Low-density floating microparticulate system based on biopolymer
627(1)
18.5.4 Modified natural polymers as chronopharmaceuticals
628(1)
18.5.5 Pulsatile release from capsular system based on biopolymeric plug
629(1)
18.6 Conclusion
630(5)
References
630(5)
19 Biopolymeric systems for the delivery of nucleic acids
635(28)
Rinku Dutta
Shyam S. Mohapatra
Subhra Mohapatra
19.1 Introduction
635(1)
19.2 Types of nucleic acids used in gene therapy
636(1)
19.3 Biopolymers used in gene delivery
637(15)
19.3.1 Polysaccharides
637(13)
19.3.2 Protein-based
650(2)
19.4 Conclusion
652(11)
References
653(10)
20 Stimuli-responsive biopolymeric systems for drug delivery to cancer cells
663(42)
Viviane Seba
Gabriel Silva
Bor Shin Chee
Jeferson Gustavo Henn
Gabriel Goetten de Lima
Zhi Cao
Mozart Marins
Michael Nugent
20.1 Introduction
663(4)
20.2 Stimuli-responsive biopolymeric systems
667(21)
20.2.1 Ultrasound responsive
667(2)
20.2.2 Temperature responsive
669(4)
20.2.3 Ph Responsive
673(2)
20.2.4 Light responsive
675(3)
20.2.5 Enzymatic responsive
678(3)
20.2.6 Magnetic responsive
681(2)
20.2.7 Redox responsive
683(2)
20.2.8 Hypoxia responsive
685(3)
20.3 Conclusion
688(17)
References
688(17)
21 Biopolymeric systems for diagnostic applications
705(18)
Jacob Shreffler
Madison Koppelman
Babak Mamnoon
Sanku Mallik
Buddhadev Layek
21.1 Introduction
705(1)
21.2 Biopolymers used for various diseases
706(12)
21.2.1 Infection
706(7)
21.2.2 Cancer
713(2)
21.2.3 Diabetes
715(1)
21.2.4 Autoimmune hemolytic anemia
716(1)
21.2.5 Blood sample stabilization
717(1)
21.3 Conclusion
718(5)
References
718(5)
22 Functionalized biopolymer-based drug delivery systems: current status and future perspectives
723(13)
Buddhadev Layek
22.1 Introduction
723(1)
22.2 Summary of topics
724(11)
22.2.1 Introduction to tailor-made biopolymers in drug delivery applications
724(1)
22.2.2 Modified biopolymers
725(3)
22.2.3 Biopolymeric conjugates/composites
728(2)
22.2.4 Modified biopolymer-based biomaterials
730(2)
22.2.5 Biopolymeric systems in biomedical applications
732(3)
22.3 Conclusions and future perspectives
735(1)
Acknowledgment 736(1)
References 736(11)
Index 747
Dr. Hriday Bera completed his Masters study at Jadavpur University, Kolkata, India and Ph.D at National University of Singapore, Singapore. He is presently working as Post-doctoral Fellow at Shenyang Pharmaceutical University, China and Nano Medical Engineering Laboratory, RIKEN, Wako, Japan. The major focus of his current research is the conceptual design, fabrication and evaluation of chemically modified naturally-occurring polymer based systems intended for drug delivery and other biomedical applications. As a part of his research career, he published 36 peer-reviewed articles (including 23 first-author articles) in various international journals of repute with a total SCI citation of 546, h-index of 15 and i10-index of 20. Moreover, he penned 20 book chapters for various international publishers. Furthermore, as a principal investigator, he has received highly competitive research grants from AICTE, Govt. of India; Ministry of Higher Education, Govt. of Malaysia; National Natural Science Foundation, China and Tekada Science Foundation, Japan. Dr. Buddhadev Layek received his Master of Pharmacy degree from Jadavpur University in Kolkata, India and Ph.D. in Pharmaceutical Sciences from North Dakota State University in Fargo, USA. He is currently working as Assistant Professor at North Dakota State University, USA. His primary research interests include tumor-targeted drug delivery, modulating the tumor microenvironment to improve outcomes of cancer therapy, and designing multifunctional, polymeric nanomaterials for drug andgene delivery. Layek has published 22 peer-reviewed articles in high impact journals and 6 book chapters for various international publishers. He has also served as a guest editor for special issues on Cell-Penetrating Peptides” and Surface-Functionalized Nanoparticles as Drug Carriers” in the International Journal of Molecular Sciences. Dr. Singh is Professor and Chair of the Department of Pharmaceutical Sciences at NDSU School of Pharmacy, and a Fellow of American Association of Pharmaceutical Scientists (AAPS) and Fellow, Association of Biotechnology and Pharmacy. Dr. Singhs research efforts focus on the mechanistic studies for developing and testing novel delivery technologies to deliver biotechnologically derived molecules (e.g., peptide, protein, and gene), using smart polymers, nanomicelles and nanoparticles for the prevention and treatment of neurodegenerative diseases, other brain disorders, and diabetes. National Institutes of Health, US Department of Defense, PhRMA Foundation, and AFPE have funded Dr. Singhs research. Dr. Singh has published over 175 peer-reviewed papers and 350 abstracts.