Atjaunināt sīkdatņu piekrišanu

E-grāmata: Teacher's Book of Engineering Thermodynamics

  • Formāts: 193 pages
  • Izdošanas datums: 01-Dec-2016
  • Izdevniecība: Nova Science Publishers Inc
  • ISBN-13: 9781614705222
  • Formāts - PDF+DRM
  • Cena: 190,35 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 193 pages
  • Izdošanas datums: 01-Dec-2016
  • Izdevniecība: Nova Science Publishers Inc
  • ISBN-13: 9781614705222

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is directed mainly at teachers of engineering thermodynamics, but it can also be very useful for the student who wants to read a comprehensive work on the subject alone. The structure of the information contained in the book has been made explicit to the reader, so that he or she can choose what to read and what to leave out with a safe criterion. At the beginning of each chapter, the reader can find one or two types of help. A chapter index can help when forming a global vision of the chapter. We have also considered it useful to insert some comments in the text, generally on conceptual issues that students usually don't think about at all, but that may be of interest for the teacher, as well as some hints about what kind of things students usually find hard to understand based on our own classroom experiences.
About This Book xi
1 Temperature and Thermal Equation of State
1(14)
1.1 Basic Concepts
2(4)
1.1.1 System, Environment, Boundary
2(1)
1.1.2 State and Equilibrium
2(2)
1.1.3 Processes
4(1)
1.1.4 Extensive and Intensive Variables
5(1)
1.2 Zeroth Law and Temperature
6(4)
1.2.1 Thermometers
7(1)
1.2.2 Temperature Scales
8(1)
1.2.3 Thermal Equation of an Homogeneous System
9(1)
1.3 Behavior in the Limit of Null Pressure
10(3)
1.3.1 Ideal Gas Temperature
11(1)
1.3.2 Empirical Laws at Low Pressures
12(1)
1.4 Ideal Gas
13(2)
2 First Law
15(16)
2.1 Generalized Work
16(3)
2.1.1 Mechanical Work Associated to Volume Variation
17(1)
2.1.2 Other Kinds of Work
17(1)
2.1.3 Example of Calculating the Work Associated to Variation of Volume
18(1)
2.2 First Law and Internal Energy
19(4)
2.2.1 Properties of the Internal Energy
20(1)
2.2.2 Examples: First Law in Moving Systems
21(2)
2.3 Enthalpy
23(1)
2.3.1 Measuring Internal Energy and Enthalpy
23(1)
2.4 Caloric Equations
24(2)
2.4.1 Caloric Coeff cients
24(1)
2.4.2 Properties of the Caloric Coeff cients
24(1)
2.4.3 Caloric Equation of the Ideal Gas
25(1)
2.5 First Law and Typical Processes with Ideal Gases
26(1)
2.5.1 Constant Volume Process: V = const.
26(1)
2.5.2 Constant Pressure Process: P = const.
26(1)
2.5.3 Constant Temperature Process: T = const.
26(1)
2.5.4 Adiabatic Process: Q = 0
27(1)
2.5.5 Example: The only equation for adiabatic processes is Q = 0
27(1)
2.6 Polytropic Processes: PVk = const.
27(1)
2.7 Caloric Equation in Gases at Null Pressure
28(3)
3 Second Law
31(24)
3.1 Purpose of the Second Law
32(1)
3.2 Entropy and Second Law
32(1)
3.3 Previous Def nitions
33(1)
3.4 Common Statements of the Second Law
33(1)
3.5 Thermodynamic Temperature
34(6)
3.5.1 Considerations on Bi-thermal Engines and Second Law
34(1)
3.5.2 Carnot's Theorem
35(3)
3.5.3 Existence of Thermodynamic Temperature
38(2)
3.6 Clausius' Equality and Inequality
40(2)
3.7 Entropy and Entropy Balance
42(6)
3.7.1 Some General Properties and Aspects Regarding S
43(1)
3.7.2 Entropy Balance in Adiabatic Processes
43(1)
3.7.3 Entropy Balance in Compound Systems
44(3)
3.7.4 Increment of Entropy in Non-static Processes
47(1)
3.8 Gibbs' Equation and Jacobian Relation
48(2)
3.8.1 Gibbs' Equation
48(1)
3.8.2 Jacobian Relation
49(1)
3.8.3 Caloric Coeff cients as a Function of the Thermal Equation
49(1)
3.8.4 Thermodynamic Temperature and Ideal Gas Temperature
49(1)
3.9 Variation of Entropy of an Ideal Gas
50(1)
3.10 Exergy
50(5)
3.10.1 Properties of Exergy
52(1)
3.10.2 Exergy Balance
52(3)
4 Thermodynamic Potentials
55(6)
4.1 Thermodynamic Potentials
56(2)
4.1.1 U(S, V) Is a Characteristic Equation
56(1)
4.1.2 Determination of the Thermodynamical Potentials
56(1)
4.1.3 The Gibbs Equations
57(1)
4.1.4 Minimum Information
58(1)
4.2 Partial Derivatives and Minimum Information
58(3)
4.2.1 Derivation Tree of Potentials
58(1)
4.2.2 Relations between Partial Derivatives
59(2)
5 Statistical Thermodynamics and Third Law
61(18)
5.1 Goal of Statistical Thermodynamics
62(1)
5.2 Characteristic Equations
63(1)
5.3 Fundamentals
63(2)
5.3.1 The First Law
63(1)
5.3.2 Gibbs Ensembles and the Ergodic Conjecture
64(1)
5.3.3 The Second Law
65(1)
5.4 The Canonical Ensemble
65(8)
5.4.1 Relation between Microscopical Variables and QR, WR
67(1)
5.4.2 Relation between Probabilities and S
68(1)
5.4.3 Helmholtz Function
69(1)
5.4.4 The Ideal Gas. Determination of k
70(2)
5.4.5 Particle in a Box
72(1)
5.5 Entropy and Ω. The Boltzmann's Principle
73(1)
5.6 The Third Law
74(5)
5.6.1 The Unattainability of Absolute Zero Theorem
75(1)
5.6.2 Planck's Formulation
75(1)
5.6.3 Nernst Heat Theorem
76(1)
5.6.4 Some Consequences of the Third Law
77(2)
6 Pure Substances
79(14)
6.1 Introduction
79(1)
6.2 Overview of the Behavior of Pure Substances
79(6)
6.2.1 Description of the PvT Surface
82(3)
6.3 Thermodynamical Formulation of Heterogeneous States
85(3)
6.3.1 Conditions for Multiphase Equilibria
85(1)
6.3.2 Def nition of Heterogeneous States
86(1)
6.3.3 Calculation of Property Changes in a Change of Phase
87(1)
6.4 Substances outside Stable Equilibrium
88(2)
6.5 Example of Thermodynamic Calculation with Heterogeneous System
90(3)
7 Calculation of Thermodynamic Properties
93(12)
7.1 Discrepancies
93(3)
7.1.1 Def nitions
93(3)
7.1.2 Illustrative Examples
96(1)
7.2 Fugacity
96(3)
7.2.1 Variation of Fugacity
98(1)
7.2.2 Equilibrium between Phases
98(1)
7.2.3 Fugacity of Condensed Phases
99(1)
7.3 Calculation of Thermodynamic Properties from Generalized Equations
99(6)
7.3.1 Tabular Data for the Compressibility Factor
99(2)
7.3.2 Tabular Data for Discrepancies and Fugacity Coeff cient
101(4)
8 Open Systems
105(18)
8.1 Introduction
105(1)
8.1.1 General Considerations
105(1)
8.1.2 General Methodology
106(1)
8.2 Mass Balance
106(1)
8.3 Energy Balance
107(1)
8.4 Entropy Balance
108(1)
8.5 Flow Exergy
109(1)
8.5.1 Exergy Balance
109(1)
8.5.2 Physical Meaning of Flow Exergy
110(1)
8.6 General Equations in Stationary Processes
110(1)
8.7 Momentum Balance
111(1)
8.8 Processes with no Work
112(4)
8.8.1 Adiabatic Flow in Ducts
112(1)
8.8.2 Bernoulli's Equation
113(1)
8.8.3 Heat Exchanger and Boilers
114(2)
8.9 Processes with Work
116(4)
8.9.1 Adiabatic Processes
116(1)
8.9.2 Non-Adiabatic Processes
116(2)
8.9.3 Pumping liquids
118(2)
8.10 Filling and Discharging of Vessels
120(1)
8.11 Other Non-Stationary Processes
120(3)
9 Multicomponent Systems
123(18)
9.1 Introduction
124(1)
9.2 Chemical Potential and Generalized Gibbs' Equations
124(1)
9.3 Partial Molar Properties
125(3)
9.3.1 Gibbs-Duhem Relation
126(1)
9.3.2 Determination of Partial Molar Properties in Binary Systems
127(1)
9.3.3 Thermodynamic Relations Among Partial Molar Properties
127(1)
9.4 Properties of Mixing
128(1)
9.5 Fugacity and Fugacity Coeff cient of a Component in a Mixture
129(1)
9.6 Activity and Activity Coeff cient
129(1)
9.7 Lewis-Randall Ideal Mixture
130(3)
9.7.1 Ideal Gases Mixture
131(2)
9.8 Excess Function
133(2)
9.9 Very Dilute Solution (Henry's Model)
135(1)
9.10 Equilibrium Conditions
136(5)
9.10.1 Practical Equilibrium Formulation
137(1)
9.10.2 Simple Cases
138(3)
10 Reactive Systems
141(18)
10.1 Introduction
142(1)
10.2 Extent of Reaction and Mole Balance
143(1)
10.3 Partial Function of Reaction
144(1)
10.4 Standard Function of Reaction
144(2)
10.5 Computing the Change of a Function ΔZ in a Reactive System
146(1)
10.6 Computing ΔZ°T
147(2)
10.7 Chemical Equilibrium Condition
149(6)
10.7.1 Practical Equation of Chemical Equilibrium
150(1)
10.7.2 Calculation of Equilibrium Constant
151(1)
10.7.3 Calculation of Equilibrium Composition
151(2)
10.7.4 Inf uence of P and T in the Equilibrium Extent of Reaction
153(2)
10.8 Heterogeneous Systems
155(1)
10.9 Several Simultaneous Reactions Systems
156(1)
10.10 Phase Rule
156(3)
11 Thermodynamic Industrial Processes
159(20)
11.1 General
159(1)
11.2 Rankine Simple Cycle Direct and Reverse
160(4)
11.2.1 Detailed Study of the Simple Rankine Thermal Cycle
162(1)
11.2.2 Detailed Study of the Simple Rankine Reverse Cycle
163(1)
11.3 Improvement Guidelines for Rankine Cycles
164(8)
11.3.1 Improvements for the Thermal Rankine Cycle: Regenerative Preheating and Middle Preheating
165(4)
11.3.2 Improvements in the Reverse Rankine Cycle: Regenerative Sub-cooling and Compression in Two Stages
169(3)
11.3.3 Fluid Choice
172(1)
11.4 Brayton Cycle
172(3)
11.5 Cryogenic Cycles
175(4)
Index 179