Atjaunināt sīkdatņu piekrišanu

E-grāmata: Techniques for Corrosion Monitoring

Edited by (Southwest Research Institute (SwRI), USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 355,02 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Techniques for Corrosion Monitoring, Second Edition, reviews electrochemical techniques for corrosion monitoring, such as polarization techniques, potentiometric methods, electrochemical noise and harmonic analyses, galvanic sensors, differential flow through cells and multielectrode systems. Other sections analyze the physical or chemical methods of corrosion monitoring, including gravimetric, radioactive tracer, hydrogen permeation, electrical resistance and rotating cage techniques, and examine corrosion monitoring in special environments such as microbial systems, concrete and soil, and remote monitoring and model predictions. A final group of chapters case studies covering ways in which corrosion monitoring can be applied to engine exhaust systems, cooling water systems, and more.

With its distinguished editor and international team of contributors, this book is a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion in such areas as automotive engineering, power generation, water suppliers and the petrochemical industry.

  • Provides an in-depth presentation of what current corrosion monitoring techniques are available
  • Presents insights into how to choose the best technique(s) for specific corrosion monitoring needs
  • Includes case studies that highlight the main issues
  • Serves as a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion
Contributors xiii
1 Introduction
1(6)
Lietai Yang
1.1 General
1(1)
1.2 Corrosion cost
1(1)
1.3 Corrosion monitoring and its importance in corrosion prevention and control
2(1)
1.4 Organization of the book
3(1)
References
4(3)
2 Corrosion fundamentals and characterization techniques
7(36)
Gustavo A. Cragnolino
2.1 Introduction
7(1)
2.2 General corrosion
8(2)
2.3 Passivity and localized corrosion
10(13)
2.4 Microbially influenced corrosion
23(2)
2.5 Flow-assisted corrosion and erosion corrosion
25(2)
2.6 Stress corrosion cracking
27(4)
2.7 Corrosion fatigue
31(2)
2.8 Hydrogen embrittlement
33(1)
2.9 Characterization techniques
34(3)
References
37(6)
Part One Electrochemical techniques for corrosion monitoring
43(194)
3 Electrochemical polarization techniques for corrosion monitoring
45(34)
Sankara Papavinasam
3.1 Introduction
45(1)
3.2 Electrochemical nature of corrosion
45(2)
3.3 Energy-potential-current relationship
47(4)
3.4 Electrochemical polarization techniques for determining corrosion rates
51(11)
3.5 Conversion of Icorr into corrosion rate
62(1)
3.6 Measurement of corrosion rate by polarization methods in the laboratory
63(6)
3.7 Monitoring of corrosion rate by polarization methods in the field
69(1)
3.8 General limitations of polarization methods of determining corrosion rate
70(4)
3.9 Applications of polarization methods in the field
74(1)
3.10 Future trends
74(1)
3.11 Further information
75(1)
References
75(4)
4 Electrochemical polarization technique based on the nonlinear region weak polarization curve fitting analysis
79(20)
Huyuan Sun
4.1 Introduction
79(3)
4.2 Numerical simulation of the polarization curves in the nonlinear region--Weak polarization analysis
82(7)
4.3 Design of low-power consumption real-time sensor systems for general corrosion monitoring
89(1)
4.4 Application of corrosion sensors based on weak polarization analysis method
90(7)
Acknowledgments
97(1)
References
97(2)
5 Electrochemical noise for corrosion monitoring
99(24)
Robert A. Cottis
5.1 Introduction to electrochemical noise
99(1)
5.2 Measurement of EN
100(4)
5.3 Alternative EN measurement methods
104(3)
5.4 Interpretation of EN
107(9)
5.5 Comparison of EN and polarization resistance for the estimation of corrosion rate
116(1)
5.6 Practical applications
117(1)
5.7 Harmonic distortion analysis
118(2)
5.8 Electrochemical frequency modulation
120(1)
References
120(3)
6 Galvanic sensors and zero-voltage ammeter
123(18)
Lietai Yang
6.1 Introduction
123(1)
6.2 Galvanic current and corrosion current
123(4)
6.3 Measurement of galvanic current and zero-voltage ammeter
127(8)
6.4 Galvanic sensors
135(1)
6.5 Applications of galvanic sensors
136(2)
6.6 Advantages and limitations of galvanic sensors
138(1)
6.7 Summary
138(1)
References
139(2)
7 Differential flow cell technique
141(32)
Bo Yang
7.1 Introduction
141(1)
7.2 Principles of the differential flow cell (DFC) method
141(12)
7.3 Data interpretation and use
153(13)
7.4 Comparison with ZRA-based occluded cell measurement results
166(2)
7.5 Applications
168(1)
7.6 Future trends and additional information
168(1)
References
169(4)
8 Multielectrode systems
173(64)
Lietai Yang
8.1 Introduction
173(1)
8.2 Earlier multielectrode systems for high-throughput corrosion studies
174(1)
8.3 Uncoupled multielectrode arrays
175(1)
8.4 Coupled multielectrode systems for corrosion detection
176(3)
8.5 Coupled multielectrode arrays for spatiotemporal corrosion and electrochemical studies
179(3)
8.6 Coupled multielectrode arrays for spatiotemporal corrosion measurements
182(2)
8.7 Ammeters used for the measurements of coupling currents
184(1)
8.8 Coupled multielectrode array sensors with simple output parameters for corrosion monitoring
184(17)
8.9 Effects of internal currents on CMAS and minimization of the internal effect
201(11)
8.10 Electrode spacing effect on corrosion rate measurement with CMAS
212(2)
8.11 Minimization of the effects by corrosion products formed in H2S-containing environment on localized corrosion rate measurement using coupled multielectrode array sensors
214(2)
8.12 Minimization of the effect by crevice on corrosion rate measurement using coupled multielectrode array sensors
216(1)
8.13 Stochastic nature of localized corrosion and variability of localized corrosion rates of metals
217(2)
8.14 Validation of corrosion rate measurement using coupled multielectrode array sensors
219(7)
8.15 Applications of coupled multielectrode array sensor for real-time corrosion monitoring
226(1)
8.16 Limitations of multielectrode systems
226(1)
8.17 Summary
227(1)
References
228(9)
Part Two Other physical or chemical methods for corrosion monitoring
237(96)
9 Gravimetric techniques
239(16)
Kuangtsan Chiang
Todd Mintz
9.1 Introduction
239(1)
9.2 Thermogravimetric analysis technique
239(4)
9.3 QCM technique
243(8)
9.4 Gravimetric techniques summary
251(1)
References
252(3)
10 Radioactive tracer methods
255(12)
Douglas C. Eberle
10.1 Principle and history
255(2)
10.2 Assumptions
257(1)
10.3 Labeling methods
258(1)
10.4 Potential isotopes
259(1)
10.5 Calibration and conversion to corrosion units
259(3)
10.6 Applications and limitations
262(3)
10.7 Sources of further information
265(1)
References
266(1)
11 Electrical resistance techniques
267(18)
C. Sean Brossia
11.1 Introduction and background
267(2)
11.2 Sensing probe designs
269(2)
11.3 Examples of application and use
271(6)
11.4 Sensing probe electronics and instrumentation
277(1)
11.5 Variations on the ER theme
278(4)
11.6 Advantages and limitations
282(1)
11.7 Summary and conclusions
283(1)
References
283(2)
12 Nondestructive evaluation technologies for monitoring corrosion
285(20)
Glenn Light
12.1 Introduction
285(1)
12.2 NDE methods for corrosion monitoring
285(16)
12.3 Future trends
301(1)
References
302(3)
13 Acoustic emission
305(18)
Miguel Gonzalez Nunez
Hossain Saboonchi
13.1 Introduction
305(1)
13.2 Principle of method
306(14)
References
320(3)
14 Hydrogen flux measurements in petrochemical applications
323(10)
Frank W.H. Dean
14.1 Introduction
323(1)
14.2 Scenarios leading to the detection of hydrogen flux
323(2)
14.3 A measurement of hydrogen activity based on flux measurement
325(2)
14.4 Comments pertaining to particular flux measurement applications
327(4)
References
331(2)
Part Three Corrosion monitoring in particular environments and other issues
333(164)
15 Corrosion monitoring in microbial environments
335(44)
Pierangela Cristiani
Giorgio Perboni
15.1 Introduction
335(1)
15.2 Biofilm and MIC monitoring
336(2)
15.3 Corrosion monitoring applied to MIC
338(6)
15.4 Biofilm and bacteria monitoring
344(10)
15.5 Integrated online monitoring systems
354(5)
15.6 Case histories
359(12)
15.7 Summary
371(1)
References
371(8)
16 Corrosion monitoring in concrete
379(28)
Till Felix Mayer
Christoph Gehlen
Christoph Dauberschmidt
16.1 Introduction
379(1)
16.2 Deterioration mechanisms for corrosion of steel in concrete
380(7)
16.3 Condition assessment of reinforced concrete structures
387(2)
16.4 Measurement principles
389(6)
16.5 Case studies
395(8)
16.6 Conclusions
403(1)
References
404(3)
17 Corrosion monitoring in soil
407(14)
Naeem Khan
17.1 Introduction
407(1)
17.2 Types of soil corrosion probes
407(1)
17.3 Electrical resistance probes
407(5)
17.4 Monitoring and data interpretation
412(2)
17.5 Effectiveness criteria
414(1)
17.6 New developments in soil corrosion probe monitoring technology
414(5)
References
419(2)
18 Corrosion monitoring in refineries
421(18)
Kjell Wold
18.1 Introduction
421(1)
18.2 Types of refinery corrosion
422(1)
18.3 Corrosion monitoring technologies available
423(6)
18.4 Purpose of monitoring--Select monitoring technology and set up accordingly
429(1)
18.5 Operational recommendations
429(5)
18.6 Monitoring from tank farm to product
434(1)
18.7 Summary and conclusions
435(3)
References
438(1)
19 Corrosion monitoring undercoatings and insulation
439(18)
Feng Gui
C. Sean Brossia
19.1 Introduction
439(1)
19.2 Corrosion monitoring methods undercoatings
440(8)
19.3 Corrosion monitoring methods for CUI
448(4)
19.4 Summary and conclusions
452(1)
References
453(4)
20 Cathodic protection and stray current measurement and monitoring
457(18)
Yanxia Du
20.1 Cathodic protection measurement and monitoring
457(6)
20.2 DC stray current interference detection and monitoring
463(6)
20.3 AC Stray current interference detection and monitoring
469(4)
20.4 Cathodic protection monitoring with corrosion probes
473(1)
References
473(2)
21 Remote monitoring and computer applications
475(22)
Rich Smalling
Ed Kruft
Dale Wehh
Leslie Lyon-House
21.1 Introduction
475(4)
21.2 Data considerations
479(3)
21.3 Communications networks
482(5)
21.4 Application-specihc requirements
487(5)
21.5 Website and supporting systems
492(3)
References
495(1)
Further reading
495(2)
Part Four Applications and case studies
497(90)
22 Corrosion monitoring in cooling water systems using differential flow cell technique
499(26)
Bo Yang
22.1 Introduction
499(1)
22.2 Corrosion inhibition program selection and optimization
499(2)
22.3 Program optimization at a chemical processing plant
501(5)
22.4 Program optimization using pilot cooling tower tests
506(4)
22.5 Refinery hydrocarbon leak detection and control
510(4)
22.6 Refinery leak detection and program optimization
514(1)
22.7 Admiralty brass corrosion control in cooling water system using brackish water as make-up
515(8)
References
523(2)
23 Advanced corrosion control at chemical plants using a electrochemical noise method
525(14)
Takao Ohtsu
23.1 Introduction
525(1)
23.2 Investigation
526(4)
23.3 Monitoring and corrosion control
530(4)
23.4 Analysis
534(1)
23.5 Corrosion control
535(1)
23.6 Conclusion
536(1)
References
537(2)
24 Corrosion monitoring under cathodic protection conditions using multielectrode array sensors
539(32)
Xiaodong Sun
Dongmei Sun
Lietai Yang
24.1 Introduction
539(1)
24.2 Evaluation of the effectiveness of cathodic protections with CMAS probes
540(8)
24.3 Typical application for cathodically protected carbon steel in simulated seawater
548(8)
24.4 Measurements of the effectiveness of CP for carbon steel in concrete
556(3)
24.5 Measurements of the effectiveness of CP for carbon steel in soil
559(5)
24.6 Measurements of localized corrosion rates of cathodically protected carbon steel in drinking water
564(5)
References
569(2)
25 Corrosion monitoring using the field signature method
571(16)
Kjell Wold
25.1 Introduction
571(1)
25.2 FSM measurement technology
571(3)
25.3 System configurations
574(2)
25.4 Applications
576(6)
25.5 FSM upgrades
582(2)
25.6 Summary and perspectives ahead
584(1)
References
584(3)
Index 587
Lietai Yang has broad experience in corrosion and high-pressure and high-temperature solution chemistry and is considered a leading authority on corrosion monitoring. He has authored/co-authored over 90 articles published in journals and conference proceedings, and multiple chapters in technical books. He has organized and chaired over 10 international symposia and workshops on corrosion monitoring. He holds 13 patents related to corrosion monitoring and electrochemical sensors for solution chemistry at high-temperatures and high-pressures. Many of the patented sensors are now deployed in plants and oil fields for corrosion mitigation programs. In addition, he has served in various roles at NACE International and ASTM International, and is the past chair of the US Technical Advisory Group to ISO Technical Committee 156 (20132015). He is a Fellow of NACE.