Atjaunināt sīkdatņu piekrišanu

E-grāmata: Techniques for Virtual Palaeontology

(Imperial College London, UK), (University of Bristol, UK), (University of Manchester, UK)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 40,39 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This guide describes the use of interactive three-dimensional digital models to study fossils through visualization, namely the techniques of physical-optical tomography (serial sectioning), focused ion beam tomography, all forms of X-ray computed tomography, neutron tomography, magnetic resonance imaging, optical tomography, laser scanning, photogrammetry, and mechanical digitization. The authors discuss the history of these techniques, theoretical concepts, and information on selecting the appropriate method for a study, their pitfalls and limitations, and suggestions for conducting work, along with case studies. They also cover techniques and software for specimen reconstruction and study and the applications of virtual models beyond simple visualization. They do not address the manual construction of idealized virtual models of taxa. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Virtual palaeontology is the study of three-dimensional fossils on computer. Such digital reconstructions can be produced in a number of different ways, and have many applications.

Virtual palaeontology, the use of interactive three-dimensional digital models as a supplement or alternative to physical specimens for scientific study and communication, is rapidly becoming important to advanced students and researchers. Using non-invasive techniques, the method allows the capture of large quantities of useful data without damaging the fossils being studied

Techniques for Virtual Palaeontology guides palaeontologists through the decisions involved in designing a virtual palaeontology workflow and gives a comprehensive overview, providing discussions of underlying theory, applications, historical development, details of practical methodologies, and case studies. Techniques covered include physical-optical tomography (serial sectioning), focused ion beam tomography, all forms of X-ray CT, neutron tomography, magnetic resonance imaging, optical tomography, laser scanning, and photogrammetry. Visualization techniques and data/file formats are also discussed in detail.

Readership: All palaeontologists and students interested in three-dimensional visualization and analysis.

New Analytical Methods in Earth and Environmental Science

Because of the plethora of analytical techniques now available, and the acceleration of technological advance, many earth scientists find it difficult to know where to turn for reliable information on the latest tools at their disposal, and may lack the expertise to assess the relative strengths or limitations of a particular technique. This new series will address these difficulties by providing accessible introductions to important new techniques, lab and field protocols, suggestions for data handling and interpretation, and useful case studies. The series represents an invaluable and trusted source of information for researchers, advanced students and applied earth scientists wishing to familiarise themselves with emerging techniques in their field.

All titles in this series are available in a variety of full-colour, searchable eBook formats. Titles are also available in an enhanced eBook edition which may include additional features such as DOI linking, high resolution graphics and video.

Recenzijas

The authors have produced a well-organized volume that is easily accessible to both professionals and nonprofessionals and will likely be cited as an introductory source as virtual technologies in paleontology continue to emerge.  (The Quarterly Review of Biology, 1 October 2015)

Techniques for Virtual Palaeontology thus provides an excellent background for students who are likely to encounter virtual techniques as they embark on a palaeontological career. It also successfully informs more established palaeontologists who either plan to enter the field or, like me, dabble in 3D but would like more background information. It is a valuable addition to the palaeontological bookshelf.  (Geological Journal, 1 May 2015)  

Acknowledgements viii
1 Introduction and History 1(13)
1.1 Introduction
1(3)
1.2 Historical Development
4(6)
1.2.1 Physical-Optical Tomography in the 20th Century
4(2)
1.2.2 The CT Revolution
6(1)
1.2.3 Modern Physical-Optical Tomography
7(1)
1.2.4 Other Modern Tomographic Techniques
8(1)
1.2.5 Surface-Based Techniques
9(1)
1.2.6 Historical Summary
10(1)
References
10(3)
Further Reading/Resources
13(1)
2 Destructive Tomography 14(27)
2.1 Introduction
14(2)
2.2 Physical-Optical Tomography
16(18)
2.2.1 Approaches to Surface Exposure
16(3)
2.2.2 Approaches to Imaging
19(4)
2.2.3 Other Considerations for Methodology
23(4)
2.2.4 Case Studies of Methodology
27(7)
2.3 Focused Ion Beam Tomography
34(3)
2.3.1 History
34(1)
2.3.2 Principles and Practicalities
34(2)
2.3.3 Examples in Palaeontology
36(1)
2.3.4 Summary
37(1)
References
37(3)
Further Reading/Resources
40(1)
3 Non-Destructive Tomography 41(74)
3.1 Introduction
41(1)
3.2 X-Ray Computed Tomography
42(47)
3.2.1 Introduction to CT
42(1)
3.2.2 History
43(3)
3.2.3 X-Rays and Matter
46(5)
3.2.4 X-Ray Microtomography
51(10)
3.2.5 Medical Scanners
61(2)
3.2.6 Lab-Based Nanotomography (Nano-CT)
63(3)
3.2.7 Synchrotron Tomography
66(4)
3.2.8 Tomographic Reconstruction
70(4)
3.2.9 Artefacts
74(4)
3.2.10 Phase-Contrast Tomography
78(4)
3.2.11 Scanning Considerations
82(1)
3.2.12 The Future: Three-Dimensional Elemental Mapping
83(2)
3.2.13 Case Studies of Methodology
85(4)
3.3 Neutron Tomography
89(5)
3.3.1 History
90(1)
3.3.2 Principles and Practicalities
90(2)
3.3.3 Examples in Palaeontology
92(1)
3.3.4 Summary
93(1)
3.4 Magnetic Resonance Imaging
94(4)
3.4.1 History
94(1)
3.4.2 Principles and Practicalities
94(2)
3.4.3 Examples in Palaeontology
96(1)
3.4.4 Summary
97(1)
3.5 Optical Tomography: Serial Focusing
98(6)
3.5.1 History
98(1)
3.5.2 Principles and Practicalities
98(3)
3.5.3 Examples in Palaeontology
101(1)
3.5.4 Other Approaches
102(1)
3.5.5 Summary
103(1)
References
104(9)
Further Reading/Resources
113(2)
4 Surface-Based Methods 115(15)
4.1 Introduction
115(1)
4.2 Laser Scanning
116(6)
4.2.1 History
116(1)
4.2.2 Principles and Practicalities
117(3)
4.2.3 Case Studies of Methodology
120(2)
4.3 Photogrammetry
122(3)
4.3.1 History
122(1)
4.3.2 Principles and Practicalities
122(2)
4.3.3 Case Study of Methodology
124(1)
4.4 Mechanical Digitization
125(1)
References
126(3)
Further Reading/Resources
129(1)
5 Digital Visualization 130(35)
5.1 Introduction
130(2)
5.2 Reconstructing Tomographic Data
132(10)
5.2.1 Registered Tomographic Datasets
132(2)
5.2.2 Registration
134(1)
5.2.3 Vector Surfacing
135(2)
5.2.4 Volume Reconstructions
137(5)
5.3 Reconstructing Surface Data
142(1)
5.4 Visualization Methodologies
142(7)
5.4.1 Introduction
142(1)
5.4.2 Visualizing Triangle Meshes
143(4)
5.4.3 Direct Volume Rendering
147(1)
5.4.4 Direct Point-Cloud Rendering
148(1)
5.5 Software and Formats
149(6)
5.5.1 Reconstruction and Visualization Software
149(3)
5.5.2 Data Formats and File Formats
152(3)
5.6 Case Studies
155(7)
5.6.1 The Herefordshire Lagerstatte (Isosurfacing; SPIERS; Physical-Optical)
155(4)
5.6.2 Caecilian Amphibians (Isosurfacing; Amira; Synchrotron CT)
159(1)
5.6.3 Neoproterozoic Problematica (Vector Surfacing; Scripting; Physical-Optical)
160(2)
References
162(2)
Further Reading/Resources
164(1)
6 Applications beyond Visualization 165(12)
6.1 Introduction
165(1)
6.2 Geometric Morphometrics
166(1)
6.3 Dental Microwear Texture Analysis
167(1)
6.4 Biomechanical Modelling
168(6)
6.4.1 Finite-Element Analysis
168(3)
6.4.2 Multibody Dynamics Analysis
171(1)
6.4.3 Body-Size Estimation
172(1)
6.4.4 Computational Fluid Dynamics
173(1)
References
174(2)
Further Reading/Resources
176(1)
7 Summary 177(11)
7.1 Introduction
177(1)
7.2 Summary of Data-Capture Methodologies
178(4)
7.3 Recommendations for Method Selection
182(2)
7.4 Developments and Trends
184(3)
7.5 Concluding Remarks
187(1)
Glossary 188(7)
Index 195
Mark Sutton is a Senior Lecturer at Imperial College, London, UK specializing in Palaeozoic invertebrate palaeobiology and in three-dimensional visualization techniques. He is the primary author of the SPIERS software suite for palaeontological 3D reconstruction.

Imran Rahman is a Research Fellow at The University of Bristol, UK.  He specializes in the origin and early evolution of echinoderms, and uses virtual palaeontology to study the form and function of fossil taxa.

Russell Garwood is an 1851 Royal Commission Research Fellow based at The University of Manchester, UK. He uses X-ray techniques to study fossils, primarily early terrestrial arthropods. He is the secondary author of the SPIERS software suite.