|
|
1 | (8) |
|
1.1 Tensors (Hypermatrices) and Tensor Products |
|
|
1 | (3) |
|
1.2 Eigenvalues of Tensors |
|
|
4 | (3) |
|
|
7 | (2) |
|
|
9 | (40) |
|
2.1 Multilinear Systems Defined by M-Tensors |
|
|
10 | (6) |
|
2.2 Finding the Positive Solution of a Nonsingular M-Equation |
|
|
16 | (9) |
|
2.3 Tensor Methods for Solving Symmetric M-Tensor Systems |
|
|
25 | (10) |
|
2.4 Solution Methods for General Multilinear Systems |
|
|
35 | (9) |
|
|
44 | (3) |
|
|
47 | (2) |
|
3 Hankel Tensor Computation and Exponential Data Fitting |
|
|
49 | (16) |
|
3.1 Fast Hankel Tensor--Vector Product |
|
|
50 | (3) |
|
3.2 Computing Eigenvalues of a Hankel Tensor |
|
|
53 | (3) |
|
|
56 | (4) |
|
3.4 Exponential Data Fitting |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
64 | (1) |
|
4 Tensor Complementarity Problems |
|
|
65 | (70) |
|
4.1 Preliminaries for Tensor Complementarity Problems |
|
|
67 | (3) |
|
4.2 An m Person Noncooperative Game |
|
|
70 | (8) |
|
4.3 Positive Definite Tensors for Tensor Complementarity Problems |
|
|
78 | (5) |
|
|
83 | (9) |
|
4.5 Tensor Complementarity Problems and Semi-positive Tensors |
|
|
92 | (6) |
|
4.6 Tensor Complementarity Problems and Q-Tensors |
|
|
98 | (12) |
|
4.7 Z-Tensor Complementarity Problems |
|
|
110 | (6) |
|
4.8 Solution Boundedness of Tensor Complementarity Problems |
|
|
116 | (6) |
|
4.9 Global Uniqueness and Solvability |
|
|
122 | (4) |
|
4.10 Exceptional Regular Tensors and Tensor Complementarity Problems |
|
|
126 | (7) |
|
|
133 | (1) |
|
|
134 | (1) |
|
5 Tensor Eigenvalue Complementarity Problems |
|
|
135 | (48) |
|
5.1 Tensor Eigenvalue Complementarity Problems |
|
|
137 | (10) |
|
5.2 Pareto H(Z)-Eigenvalues of Tensors |
|
|
147 | (3) |
|
5.3 Computational Methods for Tensor Eigenvalue Complementarity Problems |
|
|
150 | (8) |
|
5.4 A Unified Framework of Tensor Higher-Degree Eigenvalue Complementarity Problems |
|
|
158 | (11) |
|
5.5 The Semidefinite Relaxation Method |
|
|
169 | (12) |
|
|
181 | (1) |
|
|
182 | (1) |
|
6 Higher Order Diffusion Tensor Imaging |
|
|
183 | (24) |
|
6.1 Diffusion Kurtosis Tensor Imaging and D-Eigenvalues |
|
|
184 | (4) |
|
6.2 Positive Definiteness of Diffusion Kurtosis Imaging |
|
|
188 | (3) |
|
6.3 Positive Semidefinite Diffusion Tensor Imaging |
|
|
191 | (4) |
|
6.4 Nonnegative Diffusion Orientation Distribution Function |
|
|
195 | (4) |
|
6.5 Nonnegative Fiber Orientation Distribution Function |
|
|
199 | (3) |
|
6.6 Image Authenticity Verification |
|
|
202 | (2) |
|
|
204 | (2) |
|
|
206 | (1) |
|
7 Third Order Tensors in Physics and Mechanics |
|
|
207 | (42) |
|
7.1 Third Order Tensors and Hypermatrices |
|
|
208 | (10) |
|
7.2 C-Eigenvalues of the Piezoelectric Tensors |
|
|
218 | (8) |
|
7.3 Third Order Three Dimensional Symmetric Traceless Tensors and Liquid Crystals |
|
|
226 | (5) |
|
7.4 Algebraic Expression of the Dome Surface |
|
|
231 | (7) |
|
7.5 Algebraic Expression of the Separatrix Surface |
|
|
238 | (5) |
|
7.6 Eigendiscriminant from Algebraic Geometry |
|
|
243 | (2) |
|
|
245 | (2) |
|
|
247 | (2) |
|
8 Fourth Order Tensors in Physics and Mechanics |
|
|
249 | (36) |
|
8.1 The Elasticity Tensor, Strong Ellipticity and M-Eigenvalues |
|
|
250 | (7) |
|
8.2 Strong Ellipticity via Z-Eigenvalues of Symmetric Tensors |
|
|
257 | (4) |
|
8.3 Other Sufficient Condition for Strong Ellipticity |
|
|
261 | (8) |
|
8.4 Computational Methods for M-Eigenvalues |
|
|
269 | (5) |
|
8.5 Higher Order Elasticity Tensors |
|
|
274 | (9) |
|
|
283 | (1) |
|
|
284 | (1) |
|
9 Higher Order Tensors in Quantum Physics |
|
|
285 | (28) |
|
9.1 Quantum Entanglement Problems |
|
|
287 | (1) |
|
9.2 Geometric Measure of Entanglement of Multipartite Pure States |
|
|
288 | (4) |
|
9.3 Z-Eigenvalues and Entanglement of Symmetric States |
|
|
292 | (5) |
|
9.4 Geometric Measure and U-Eigenvalues of Tensors |
|
|
297 | (2) |
|
9.5 Regularly Decomposable Tensors and Classical Spin States |
|
|
299 | (11) |
|
|
310 | (1) |
|
|
311 | (2) |
References |
|
313 | (14) |
Index |
|
327 | |