Atjaunināt sīkdatņu piekrišanu

E-grāmata: Tensorial Analysis of Networks (TAN) Modelling for PCB Signal Integrity and EMC Analysis

Edited by (Missouri S&T EMC Laboratory, USA), Edited by (NUIST University, China)
  • Formāts: EPUB+DRM
  • Sērija : Materials, Circuits and Devices
  • Izdošanas datums: 16-Sep-2020
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530500
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 206,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Materials, Circuits and Devices
  • Izdošanas datums: 16-Sep-2020
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530500
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book describes a fast, accurate and flexible modelling methodology for PCBs. With its systematic approach to addressing tensorial analysis of networks (TAN) modelling methods, the book provides information and solutions to the designers and manufacturers of analogue, RF, digital and mixed signal electronic circuits and systems.



This book describes a fast, accurate and flexible modelling methodology for PCBs. The model uses the concept of tensorial analysis of networks (TAN) based on Kron's and Kron-Branin's methods adapted for the EMC use by O. Maurice. The TAN approach is applied to the PCB SI and electromagnetic compatibility (EMC) analysis.

Each chapter presents a methodology consisting of the problem formulation, classical circuit description, TAN primitive elements, TAN graph topology elaboration, problem metric mathematization and the posed-problem resolution based on Python and Matlab routine algorithms. This methodical approach has been applied to the following topics: basic knowledge to practice TAN for PCB SI/PI/EMC investigation; PCB primitive components analysis with TAN; analytical calculation of PCB trace Z/Y/T/S matrices with TAN approach; fast S-parameter Kron-Branin's modelling of rectangular wave guide (RWG) structure via mesh impedance reduction; time domain TAN modelling of PCB system with Kron's method; direct time-domain analysis with TAN method for PCB modelling; coupling between EM field and multilayer PCB with MKME; conducted emissions (CE) EMC TAN modelling; PCB conducted susceptibility (CS) EMC TAN modelling; PCB radiated susceptibility (RS) EMC TAN modelling; TAN model of loop probe coupling onto shielded coaxial short-cable; nonlinear behaviour conduced EMC model of an ADC based mixed PCB under radio frequency interference (RFI); far-field prediction combining simulations with near-field measurements for EMI assessment of PCBs; and element of information for numerical modelling on PCB.

With its highly systematic approach to addressing TAN modelling methods, this book provides key information and novel solutions to the designers and manufacturers of analogue, RF, digital and mixed signal electronic circuits and systems.

About the editors xv
Foreword xvii
1 General introduction
1(10)
Blaise Ravelo
Olivier Maurice
Zhifei Xu
1.1 Preliminary introduction
1(1)
1.2
Chapter 2: Basic knowledge to practice TAN for PCB SI/PI/EMC investigation
2(1)
1.3
Chapter 3: PCB primitive components analysis with TAN
2(1)
1.4
Chapter 4: Analytical calculation of PCB trace Z/Y/T/S matrices with TAN approach
3(1)
1.5
Chapter 5: Fast S-parameter Kron--Branin's modelling of rectangular wave guide (RWG) structure via mesh impedance reduction
3(1)
1.6
Chapter 6: Time domain TAN modelling of PCB lumped system with Kron's method
4(1)
1.7
Chapter 7: Direct time-domain analysis with TAN method for distributed PCB modelling
4(1)
1.8
Chapter 8: Coupling between EM field and multilayer PCB with MKME
5(1)
1.9
Chapter 9: Conducted emissions (CEs) EMC TAN modelling
5(1)
1.10
Chapter 10: PCB-conducted susceptibility (CS) EMC TAN modelling
6(1)
1.11
Chapter 11: PCB-radiated susceptibility (RS) EMC TAN modelling
7(1)
1.12
Chapter 12: TAN model of loop probe coupling onto shielded coaxial short cable
7(1)
1.13
Chapter 13: Nonlinear behaviour conducted EMC model of an ADC-based mixed PCB under radiofrequency interference (RFI)
8(1)
1.14
Chapter 14: Far-field prediction combining simulations with near-field measurements for EMI assessment of PCBs
8(1)
1.15
Chapter 15: Element of information for numerical modelling on PCB
9(1)
1.16
Chapter 16: General conclusion
9(2)
2 Basic knowledge to practice TAN for PCB SI/PI/EMC investigation
11(44)
Olivier Maurice
Zhifei Xu
Yang Liu
Blaise Ravelo
2.1 TAN principles
11(3)
2.2 Electronic world and electronic scaling
14(40)
2.2.1 Propagation
15(3)
2.2.2 Lines and microstrips modelling
18(1)
2.2.3 Some particular applications
19(2)
2.2.4 Lossy propagation model
21(3)
2.2.5 Asymptotic behaviour without propagation
24(3)
2.2.6 Field coupling modelling
27(19)
2.2.7 Components modelling
46(8)
References
54(1)
3 PCB primitive components analysis with TAN
55(22)
Zhifei Xu
Blaise Ravelo
Yang Liu
Olivier Maurice
3.1 TAN operators for electrical application
55(7)
3.1.1 Covariant parameters: voltage tensors
55(1)
3.1.2 Contravariant parameters: current tensors
56(1)
3.1.3 Twice covariant parameters: impedance tensors
57(1)
3.1.4 Electrical problem metric elaboration
58(1)
3.1.5 Branch space to mesh space conversion
59(3)
3.2 TAN modelling methodology
62(2)
3.3 PCB elements modelling
64(11)
3.3.1 Interconnects
64(8)
3.3.2 Vias
72(1)
3.3.3 Power-ground plane
73(1)
3.3.4 SMA connectors
74(1)
References
75(2)
4 Analytical calculation of PCB trace ZIYITIS matrices with TAN approach
77(26)
Blaise Ravelo
Zhifei Xu
Yang Liu
Olivier Maurice
4.1 Introduction
77(2)
4.2 General description of P-port system
79(8)
4.2.1 Diagram representation
79(1)
4.2.2 Analytical variables constituting PCB electrical interconnections
80(2)
4.2.3 TAN modelling methodology
82(5)
4.3 Application study of the TAN method to Y-tree shape PCB trace modelling
87(5)
4.3.1 Y-tree PCB problem description
87(1)
4.3.2 TAN modelling of RLC Y-tree
88(3)
4.3.3 Validation result with SPICE simulations
91(1)
4.4 Application study to Ψ-shape microstrip interconnect
92(7)
4.4.1 Analytical investigation on the TAN modelling of Ψ-tree PCB
92(5)
4.4.2 Validation results with SPICE simulations
97(2)
4.5 Conclusion
99(1)
References
99(4)
5 Fast S-parameter Kron--Branin's modelling of rectangular wave guide (RWG) structure via mesh impedance reduction
103(18)
Blaise Ravelo
Olivier Maurice
5.1 Introduction of
Chapter 4
103(1)
5.2 Problem formulation
104(2)
5.2.1 Structural description
105(1)
5.2.2 Representation of S-matrix black box
105(1)
5.3 KB theorization of RWG S-matrix
106(4)
5.3.1 Recall on RWG and TL theory
106(2)
5.3.2 KB modelling of RWG
108(2)
5.4 Validation results with parametric analyses
110(8)
5.4.1 Description of RWG POC
111(2)
5.4.2 Discussion on RWG simulation results
113(5)
5.5 Conclusion
118(1)
References
118(3)
6 Time-domain TAN modelling of PCB-lumped system with Kron's method
121(24)
Zhifei Xu
Yang Liu
Blaise Ravelo
Olivier Maurice
6.1 Introduction
121(2)
6.2 Basic definitions and general methodology of the innovative direct TD TAN modelling of PCBs
123(8)
6.2.1 Representation of TAN topology in the TD
123(1)
6.2.2 Key parameters of TD implementation of TAN approach
124(2)
6.2.3 TAN TD primitive elements
126(4)
6.2.4 Methodology of PCB trace modelling with TAN TD approach
130(1)
6.3 Application to two port LC circuits
131(10)
6.3.1 TD TAN application with TTLC circuit
131(5)
6.3.2 TD TAN application with F-tree LC circuit
136(5)
6.4 Conclusion
141(1)
References
141(4)
7 Direct time-domain analysis with TAN method for distributed PCB modelling
145(12)
Zhifei Xu
Blaise Ravelo
Jonathan Gantet
Nicolas Marier
Olivier Maurice
7.1 Introduction
145(2)
7.1.1 Branin's TD expression
146(1)
7.1.2 Via's TD expression
147(1)
7.2 Application example of TD TAN modelling
147(9)
7.2.1 Graph topology of the 3D multilayer hybrid PCB
148(1)
7.2.2 Integration of the innovative direct TD method
149(5)
7.2.3 Validation results
154(2)
7.3 Conclusion
156(1)
References
156(1)
8 Coupling between EM field and multilayer PCB with MKME
157(20)
Zhifei Xu
Yang Liu
Blaise Ravelo
Jonathan Gantet
Nicolas Marier
Olivier Maurice
8.1 Introduction on R-EMC analytical modelling
157(1)
8.2 Bibliography of MKME formalism on EMC of PCB
158(1)
8.3 Recall on MKME mesh space to moment space definition
158(2)
8.4 Recall on field coupling with MKME formalism
160(5)
8.4.1 Electric coupling
160(2)
8.4.2 Magnetic coupling
162(3)
8.5 MKME model for 3D multilayer PCB illuminated by EM plane wave
165(8)
8.5.1 Formulation of the problem
165(1)
8.5.2 MKME model establishment
166(2)
8.5.3 Validation results
168(5)
8.6 Conclusion
173(1)
References
173(4)
9 Conducted emissions (CEs) EMC TAN modelling
177(52)
Olivier Maurice
Zhifei Xu
Yang Liu
Blaise Ravelo
9.1 The ICEM model and the EMC problem
178(1)
9.2 Noise source
179(2)
9.2.1 Current noise source
179(1)
9.2.2 Thermal noise source
180(1)
9.3 IC package
181(3)
9.3.1 First or second order access network (AN)
181(1)
9.3.2 N order AN
182(1)
9.3.3 Couplings between AN
183(1)
9.4 Synthesis of the package impedance operator construction methodology
184(1)
9.5 Computing the package model
185(7)
9.5.1 Measuring resistances
186(1)
9.5.2 Measuring inductances
186(3)
9.5.3 Measuring mutual inductances
189(1)
9.5.4 Measuring capacitance
189(2)
9.5.5 Measuring mutual capacitance
191(1)
9.6 Acquiring the IA and complete component model for conducted emissions
192(1)
9.7 Coupling between blocks in the chip
193(1)
9.8 Conducted emissions of power electronics
193(10)
9.8.1 Power chopper
194(6)
9.8.2 The generic power chopper
200(3)
9.9 Other nonlinear noise sources
203(1)
9.10 From the component to the PCB connectors
204(19)
9.10.1 PP diagram
207(1)
9.10.2 Interaction matrix and architecture decision
208(2)
9.10.3 Box influence
210(4)
9.10.4 Connecting the component to the microstrip network
214(1)
9.10.5 Multilayers PCB
215(3)
9.10.6 Locating the solution on the PP diagram and conclusion on the EMC risk
218(5)
9.11 Some indications on hyperfrequency modelling
223(3)
References
226(3)
10 PCB-conducted susceptibility (CS) EMC TAN modelling
229(30)
Olivier Maurice
Blaise Ravelo
Zhifei Xu
10.1 Disturbing mechanisms
229(1)
10.2 Field-to-line coupling
230(4)
10.2.1 Magnetic field coupling
230(1)
10.2.2 Electric field coupling
231(1)
10.2.3 Conclusion on the field-to-line coupling fundamental processes
232(2)
10.3 Coupling to shielded cables
234(1)
10.4 An example of a conducted source coming from an external field to harnesses coupling
235(3)
10.5 In-band component disturbance risk
238(8)
10.5.1 Digital circuits
239(1)
10.5.2 Analogue circuits---operational amplifiers
239(7)
10.6 Transmission to the component through the PCB
246(1)
10.7 The failure risk
247(1)
10.8 Out-band component disturbance risk
247(2)
10.9 Radioreceptor circuits
249(8)
10.9.1 In-band radioreceptor disturbances
250(1)
10.9.2 Out-band radioreceptor disturbances
251(1)
10.9.3 Sources of disturbances of radio receptor on the PCB
251(6)
References
257(2)
11 PCB-radiated susceptibility (RS) EMC TAN modelling
259(14)
Zhifei Xu
Blaise Ravelo
Yang Liu
Olivier Maurice
11.1 Far-field coupling
259(4)
11.2 MKME for 3D multilayer PCB illuminated by I-microstrip line
263(6)
11.2.1 Description of system
264(1)
11.2.2 MKME topological analysis
264(2)
11.2.3 Validation results
266(3)
11.3 Sensitivity analysis with MKME
269(3)
11.3.1 Sensitivity analysis with theoretical expression for Branin's model
269(2)
11.3.2 Conclusion
271(1)
References
272(1)
12 TAN model of loop probe coupling onto shielded coaxial short cable
273(24)
Christel Cholachue
Amelie Simoens
Olivier Maurice
Blaise Ravelo
12.1 Introduction
273(2)
12.2 Formulation of problem constituted by shielded cable under loop probe radiated field aggression
275(4)
12.2.1 Geometrical definition of the problem
275(2)
12.2.2 Electrical description of the problem
277(1)
12.2.3 Formulation of shielding effectiveness (SE)
278(1)
12.3 Theoretical investigation of SE modelling with TAN approach
279(6)
12.3.1 Methodology of the S-parameter modelling of coaxial modelling under probe EM radiation
279(1)
12.3.2 Elaboration of equivalent graph
280(4)
12.3.3 Equivalent equation of multi-port black box
284(1)
12.4 Validation results
285(8)
12.4.1 Description of the POC structure
285(3)
12.4.2 Comparisons of computed and simulated S-parameters
288(3)
12.4.3 Discussion on the advantages and drawbacks of the TAN model
291(2)
12.5 Conclusion
293(1)
References
293(4)
13 Nonlinear behaviour conduced EMC model of an ADC-based mixed PCB under radio-frequency interference (RFI)
297(18)
Fayu Wan
13.1 Introduction
298(1)
13.2 Description of the NL model of a mixed circuit under study
299(3)
13.2.1 EMC problem formulation
299(1)
13.2.2 Analytical definition of RFI
300(1)
13.2.3 Output voltage analytical expression
300(2)
13.3 Methodology of the EMC NL modelling of a mixed circuit
302(4)
13.3.1 Nonlinear model flow design and an input-output equivalent transfer circuit
302(1)
13.3.2 Description of monitoring code implemented in MATLAB®
303(3)
13.4 Validation results with parametric analyses
306(4)
13.4.1 Experimental set-up configuration
306(1)
13.4.2 Empirical characteristics of RFI
306(2)
13.4.3 Discussion on simulation and test results
308(2)
13.5 Conclusion
310(1)
References
311(4)
14 Far-field prediction combining simulations with near-field measurements for EMI assessment of PCBs
315(32)
Dominik Schroder
Sven Lange
Christian Hangmann
Christian Hedayat
14.1 Introduction
318(2)
14.2 Near-field scanning fundamentals
320(5)
14.2.1 Near-and far-field definition
320(1)
14.2.2 Radiation pattern
321(1)
14.2.3 Near-field scanner system
321(2)
14.2.4 Basic probes for near-field scanning
323(2)
14.2.5 Near-field scanner NFS3000
325(1)
14.3 Theoretical basics of near-to-far-field transformation
325(12)
14.3.1 Introduction
325(1)
14.3.2 Maxwell's equations
326(1)
14.3.3 Material equations
327(1)
14.3.4 Electromagnetic boundary conditions
327(1)
14.3.5 Formulations for radiation
328(2)
14.3.6 Surface equivalence theorem
330(5)
14.3.7 Surface equivalence theorem for the NFS environment
335(2)
14.4 Near-field-to-far-field transformation using the Huygens' box principle
337(6)
14.4.1 Huygens' box measurement
337(1)
14.4.2 Validation example and setup
338(1)
14.4.3 Near-field results
339(2)
14.4.4 Near-field-to-far-field transformation
341(2)
14.5 Extended use of the near-field scan
343(1)
14.6 Conclusion
343(1)
References
344(3)
15 Element of information for numerical modelling on PCB: focus on boundary element method
347(16)
Toufic Abboud
Benoit Chaigne
15.1 Boundary element method
347(5)
15.1.1 Integral representation formulas
347(1)
15.1.2 Integral equation
348(1)
15.1.3 Variational formulation and finite element approximation
349(2)
15.1.4 Solution
351(1)
15.2 Numerical and practical issues
352(4)
15.2.1 Performance issue and fast solvers
352(2)
15.2.2 Low-frequency instability
354(2)
15.2.3 Meshing
356(1)
15.3 Formulation and stability issues
356(2)
15.3.1 LAYER formulation
356(1)
15.3.2 Validation with an analytic solution
357(1)
15.4 A posteriori error estimate and adaptive BEM
358(4)
15.4.1 A posteriori error estimate
359(1)
15.4.2 Adaptive mesh refinement
359(2)
15.4.3 Stopping criterion
361(1)
References
362(1)
16 General conclusion
363(6)
Olivier Maurice
Blaise Ravelo
Zhifei Xu
16.1 Final words on the developed EMC, SI and PI analyses of PCBs based on the TAN formalism
363(1)
16.2 Summary on the fundamental elements to practice Kron's method
364(1)
16.3 Summary on PCB interconnect modelling in the frequency domain with TAN approach
364(1)
16.4 Summary on the PCB modelling in the time domain
364(1)
16.5 Summary on the radiated EMC modelling of PCB with TAN approach
365(1)
16.6 Summary on the conducted EMC modelling of PCBs with TAN approach
365(1)
16.7 Summary on the TAN modelling of PCB metallic shielding cuboid
365(1)
16.8 Summary on TAN modelling of coaxial cable under EM NF radiation from electronic loop probe
365(1)
16.9 Summary on the analysis of NL EMC effect for mixed PCBs
366(1)
16.10 Summary on the overview of PCB numerical modelling
366(1)
16.11 Concluding remark
366(1)
References
366(3)
Index 369
Blaise Ravelo is a professor at NUIST University, China. His research interests include multiphysics and electronics engineering, and he is a pioneer of the negative group delay (NGD) concept. He was research director of nine PhD students and regularly involved in EU R&D&I-projects. He is member of IET Electronics Letters editorial board as circuit & system subject editor, and has (co)authored more than 250 papers in peer-reviewed journals and conferences.



Zhifei Xu is a postdoctoral researcher at the Missouri S&T EMC Laboratory, Missouri University of Science and Technology, Rolla, USA. His research area covers signal integrity, power integrity and EMC analysis with different models on multilayer PCBs. His current publications are focused on the Kron-Branin model for multilayer PCB modeling applications.