Atjaunināt sīkdatņu piekrišanu

E-grāmata: Testing at the Speed of Light: The State of U.S. Electronic Parts Space Radiation Testing Infrastructure

  • Formāts: 88 pages
  • Izdošanas datums: 08-Jun-2018
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309470803
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 3,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 88 pages
  • Izdošanas datums: 08-Jun-2018
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309470803
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling.





Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.

Table of Contents



Front Matter Summary 1 Introduction 2 The Space Radiation Environment and Its Effect on Electronics 3 Current State of Single-Event Effects Hardness Assurance and Infrastructure 4 Future Infrastructure Needs 5 A Path Toward the Future Appendixes Appendix A: Statement of Task Appendix B: Single-Event Effects Testing Facilities in the United States Appendix C: Acronyms Appendix D: Sources for Further Reading Appendix E: Committee and Staff Biographies Appendix F: Speakers Before the Committee
SUMMARY 1(7)
1 Introduction
8(4)
2 The Space Radiation Environment and its Effect on Electronics
12(8)
Space Environments
12(1)
Galactic Cosmic Rays
13(1)
Trapped Radiation
14(1)
Extraterrestrial Trapped Radiation
14(1)
Solar Particle Events
14(2)
Radiation Effects
16(1)
Impacts of Single-Event Effects on Spacecraft
17(3)
3 Current State of Single-Event Effects Hardness Assurance and Infrastructure
20(24)
Radiation Hardness Assurance Approach
20(2)
Single-Event Effects Hardness Assurance
22(4)
Test Methods for Different Single-Event Effect Modes
26(2)
Assessing Facilities
28(3)
Texas A&M University Cyclotron Facility
31(1)
Lawrence Berkeley National Laboratory
32(1)
NASA Space Radiation Laboratory
32(1)
Brookhaven SEU Test Facility
33(1)
National Superconducting Cyclotron Laboratory at Michigan State University
33(1)
Other Single-Event Effect Test Facilities and Techniques
34(1)
Summary Single-Event Effect Test Facilities and Techniques
35(1)
Data
36(3)
Single-Event Effect Propagation from the Device to the System Level
39(1)
People---Workforce, Education, and Training
40(1)
Body of Knowledge of Single-Event Effect Modes for Available Semiconductor Technologies
40(1)
Status of Radiation Effects Workforce
41(1)
A Field Under Increasing Stress
42(2)
4 Future Infrastructure Needs
44(7)
The Changing User Landscape
45(1)
The Changing Electronics Landscape
45(4)
The Impact on Testing Infrastructure
49(1)
Potential Approaches to Reducing the Pressure on Testing Infrastructure
49(2)
5 A Path Toward the Future
51(10)
Facilities
51(2)
Verification, Testing, and Qualification Methodologies
53(1)
Workforce and Training
54(3)
Databases and Standards
57(4)
APPENDIXES
A Statement of Task
61(1)
B Single-Event Effects Testing Facilities in the United States
62(3)
C Acronyms
65(3)
D Sources for Further Reading
68(2)
E Committee and Staff Biographies
70(5)
F Speakers Before the Committee
75