Atjaunināt sīkdatņu piekrišanu

E-grāmata: Theoretical Chemistry for Electronic Excited States

(Imperial College London, UK)
  • Formāts - EPUB+DRM
  • Cena: 177,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This reference is ideal for both theorists and experimentalists working in theoretical chemistry, electronic structure and molecular dynamics

Over the past few decades, experimental excited state chemistry has moved into the femtochemistry era, where time resolution is short enough to resolve nuclear dynamics. Recently, the time resolution has moved into the attosecond domain, where electronic motion can be resolved as well. Theoretical chemistry is becoming an essential partner in such experimental investigations; not only for the interpretation of the results, but also to suggest new experiments.

This book provides an integrated approach. The three main facets of excited-state theoretical chemistry; namely, mechanism, which focuses on the shape of the potential surface along the reaction path, multi-state electronic structure methods, and non-adiabatic dynamics, have been brought together into one volume. Theoretical Chemistry for Electronic Excited States is aimed at both theorists and experimentalists, involved in theoretical chemistry, in electronic structure computations and in molecular dynamics. The book is intended to provide both with the knowledge and understanding to discover ways to work together more closely through its unified approach.

Chapter 1 Introduction and Motivation
1(33)
1.1 The Chemical Nature of Electronic Excited States
2(7)
1.2 Chemical Reactivity in Electronic Excited States
9(13)
1.3 The Main Mechanism for Excited State Photochemical Transformations
22(2)
1.4 The Essential Features of Excited State Computational Procedures
24(10)
1.4.1 Electronic Structure Computations Within the Algebraic Approximation
24(3)
1.4.2 Gradients, Second Derivatives, Molecular Structure and Dynamics
27(1)
1.4.3 Perturbation Theory Within the Algebraic Approximation
28(2)
References
30(4)
Chapter 2 Conceptual Development Centred on the Shapes and Topological Features of Potential Surfaces
34(56)
2.1 Excited States Are VB Isomers of Ground States
35(5)
2.2 The Mechanism of Radiationless Decay
40(4)
2.3 Theory of Conical Intersections
44(40)
2.3.1 The "Shape" of Conical Intersections
44(12)
2.3.2 Understanding Conical Intersections Using Valence Bond Theory
56(5)
2.3.3 What Happens When One Does a Conical Intersection Circuit in the Branching Plane?
61(10)
2.3.4 Conical Intersections in n - 1 Directions: For Example Singlet-Triplet Crossings
71(7)
2.3.5 More Advanced Treatment of the Extended Seam of a Conical Intersection
78(6)
2.4 Summary
84(6)
References
86(4)
Chapter 3 Electronic Structure Methods for the Computation of Electronic States
90(44)
3.1 How Is an Electronic Excited State Formulated Within the Orbital-based Methods Used in the Ground State?
91(1)
3.2 The Conceptual Aspects of Electron Correlation for Electronic Excited States
92(18)
3.2.1 Multi-dimensional Perturbation Theory
93(9)
3.2.2 Three Different Correlation Effects in Excited States
102(1)
3.2.3 Effective Hamiltonians for Singly Ionized States and for Single Excitations from a Closed Shell
103(3)
3.2.4 Combining Force Field Methods with Electronic Structure Computations
106(4)
3.3 Electronic Structure Methods for Excited State Computation
110(17)
3.3.1 Methods with max nh = 1, max np = 1: Complete Active Space SCF Method
110(7)
3.3.2 Methods with (max nh = 2, max np = 2): CASPT2 and RPA/TD-DFT
117(1)
3.3.3 Methods Based on Space of Particle Hole Excitations
118(1)
3.3.4 Nuclear Gradients and Hessians
119(2)
3.3.5 Designing an Active Space
121(6)
3.4 Non-stationary States and Electron Dynamics: Solving the Time-dependent Schrodinger Equation for Electronic Motion (Electron Dynamics)
127(4)
3.5 Summary and Conclusions
131(3)
References
132(2)
Chapter 4 The Dynamics of Nuclear Motion
134(19)
4.1 Theoretical and Conceptual Introduction
134(5)
4.2 Quantum Dynamics with Moving Gaussians
139(6)
4.3 Electron Dynamics Coupled to Nuclear Motion (the Ehrenfest Method and Beyond)
145(3)
4.4 Semi-classical Dynamics with Surface Hopping
148(3)
4.5 Summary
151(2)
References
151(2)
Chapter 5 Applications and Case Studies in Nonadiabatic Chemistry
153(62)
5.1 Introductory Remarks
153(4)
5.2 Photochromism, Photostabilizers and Photochemical Switches
157(17)
5.2.1 Ultrafast Internal Conversion of Azulene
157(2)
5.2.2 Dihydroazulene (DHA)/Vinylheptafulvene (VHF) Photochromism
159(3)
5.2.3 Diarylethene Photochromism
162(5)
5.2.4 Excited State Intramolecular Proton Transfer in o-hydroxyphenyl-(1,3,5)-triazine
167(3)
5.2.5 Photostability of an Excited Cytosine-Guanine Base Pair in DNA
170(4)
5.3 Cis-Trans Isomerization
174(5)
5.3.1 Photo-activation of the Photoactive Yellow Protein
174(5)
5.4 Vibrational Control of Photochemistry on an Extended Seam
179(10)
5.4.1 Fulvene Dynamics on an Extended Seam
180(3)
5.4.2 A Model Cyanine Dye
183(4)
5.4.3 The Extended Seam Benzene Conical Intersection
187(2)
5.5 Photochemistry Involving Lone Pairs [ n-π* States)
189(5)
5.5.1 Photochemistry of Formaldehyde
190(4)
5.6 Energy Transfer (Charge Transfer vs. Charge Migration)
194(9)
5.6.1 Charge Transfer in Bis(hydrazine) Radical Cations and in Bis(methylene) Adamantyl Radical Cation (BMA)
194(7)
5.6.2 Electron Dynamics (Charge Migration) in BMA[ 5,5]
201(2)
5.7 Mapping the "Complete" Conical Intersection Seams in Benzene
203(5)
5.8 Summary
208(7)
References
209(6)
Chapter 6 Conclusion and Future Developments
215(6)
References
220(1)
Subject Index 221