Atjaunināt sīkdatņu piekrišanu

Theoretical Models of Skeletal Muscle: Biological and Mathematical Considerations [Hardback]

  • Formāts: Hardback, 252 pages, height x width: 235x150 mm, weight: 480 g, index
  • Izdošanas datums: 20-Apr-1998
  • Izdevniecība: John Wiley & Sons Ltd
  • ISBN-10: 0471969559
  • ISBN-13: 9780471969556
Citas grāmatas par šo tēmu:
  • Formāts: Hardback, 252 pages, height x width: 235x150 mm, weight: 480 g, index
  • Izdošanas datums: 20-Apr-1998
  • Izdevniecība: John Wiley & Sons Ltd
  • ISBN-10: 0471969559
  • ISBN-13: 9780471969556
Citas grāmatas par šo tēmu:
Examines the structural, mechanical and neurophysiological properties of skeletal muscle as they relate to force and movement and translates these properties into rigorous and mechanically consistent models of skeletal muscle. Including a chapter on modelling skeletal muscle using simple shapes and a comprehensive discussion of the molecular events of muscular force production. Theoretical Models of Skeletal Muscle will be invaluable reading for professionals and students within the fields of biomechanics, kinesiology, sports science and physiotherapy. The workings of the "cross-bridge model," the "Hill model," the "energetics model," and a model based on continuum mechanics are evaluated in detail.
Preface ix(2)
Introduction xi
Part One Foundations 3(112)
1 Basic introduction to skeletal muscle
3(20)
1.1 General considerations
3(1)
1.2 Muscle structure
3(6)
1.3 Muscle force control
9(7)
1.4 Energy considerations
16(2)
1.5 Types of contractions
18(1)
1.6 How does a muscle produce force?
19(1)
Problems
20(1)
References
21(2)
2 Modelling skeletal muscle using simple geometric shapes: biological considerations
23(47)
2.1 Introduction
23(1)
2.2 Shapes
24(1)
2.3 Contractile element properties
25(23)
2.4 Angle of pinnation
48(4)
2.5 Passive element properties
52(5)
Problems
57(7)
References
64(6)
3 Hill and Huxley type models: biological considerations
70(17)
3.1 Introduction
70(1)
3.2 Hill type models
70(5)
3.3 Huxley (cross-bridge) type models
75(9)
Problems
84(1)
References
84(3)
4 Rheological and structural models: mathematical considerations
87(28)
4.1 Rheological models
87(14)
4.2 Structural models
101(8)
Problems
109(1)
References
110(5)
Part Two Applications 115(59)
5 Fundamentals of mechanics
115(30)
5.1 Introduction
115(3)
5.2 Coordinates, displacement, and elongation
118(5)
5.3 Rates and virtual displacements
123(1)
5.4 External and internal forces
124(3)
5.5 The constitutive equation
127(1)
5.6 The principle of virtual work
128(3)
5.7 Example: a one-degreee-of-freedom system
131(3)
5.8 A more general example
134(2)
5.9 Geometric constraints
136(2)
5.10 Example: preservation of area
138(6)
Problems
144(1)
References
144(1)
6 Towards a complete muscle model
145(8)
6.1 Introduction
145(1)
6.2 A program for static analysis of skeletal muscle
146(2)
6.3 Example: static deformation of a cat medial gastrocnemius muscle
148(2)
6.4 Time-dependent modelling
150(1)
6.5 A program for time-dependent analysis of skeletal muscle
151(1)
6.6 Example: time-dependent deformation of a cat medical gastrocnemius muscle
152(1)
References
152(1)
7 Movement control
153(21)
7.1 Introduction
153(1)
7.2 The neurophysiology of movement control
153(4)
7.3 The anatomy of movement control
157(3)
7.4 Theoretical and experimental considerations on movement control
160(11)
7.5 Future research in the area of mechanics in movement control
171(1)
References
172(2)
Appendix A: Topics in time-independent modelling
174(28)
A.1 Solving nonlinear problems
174(2)
A.2 A code for the Newton-Raphson technique
176(1)
A.3 Obtaining the residuals and derivatives directly from virtual work
177(2)
A.4 A linear solver
179(2)
A.5 Coding the virtual work
181(3)
A.6 Coding the equilibrium and constraint equations directly
184(3)
A.7 Putting it all together: a program for static analysis of skeletal muscle
187(8)
A.8 Example: static deformation of a cat medial gastrocnemius muscle
195(4)
A.9 A Variant of the previous example
199(3)
Appendix B: Topics in time-dependent modelling
202(33)
B.1 The finite-difference method
202(2)
B.2 Example: dynamics of a one-degree-of-freedom system by central differences
204(2)
B.3 Time-dependent problems: implicit methods
206(6)
B.4 Example: a two-degrees-of-freedom system
212(3)
B.5 A program for time-dependent analysis of skeletal muscle
215(10)
B.6 Example: time-dependent deformation of a cat medial gastrocnemius muscle
225(8)
References
233(2)
Index 235