Atjaunināt sīkdatņu piekrišanu

E-grāmata: Theory And Applications Of Ocean Surface Waves (Third Edition) (In 2 Volumes)

(Technion-israel Inst Of Tech, Israel), (Massachusetts Inst Of Tech, Usa), (Massachusetts Inst Of Tech, Usa)
  • Formāts: 1240 pages
  • Sērija : Advanced Series On Ocean Engineering 42
  • Izdošanas datums: 15-Mar-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813147201
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 73,26 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 1240 pages
  • Sērija : Advanced Series On Ocean Engineering 42
  • Izdošanas datums: 15-Mar-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813147201
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book set is a revised version of the 2005 edition of Theory and Applications of Ocean Surface Waves. It presents theoretical topics on ocean wave dynamics, including basic principles and applications in coastal and offshore engineering as well as coastal oceanography. Advanced analytical and numerical techniques are demonstrated. In this revised version, five chapters on recent developments in linear and nonlinear aspects have been added. The first is on detailed analyses in Wave/Structure Interactions. The second is a new section on Waves through a Marine Forest, a topic motivated by its possible relevance to tsunami reduction. The third is on Long Waves in Shallow Water and the fourth is an update on Broad-Banded Nonlinear Surface Waves in the Open Sea to include new findings in this topic. The fifth is an expanded chapter on Numerical Simulation of Nonlinear Wave Dynamics to include predictions of nonlinear spectral evolution and rogue wave occurrence and dynamics using large-scale phase-resolved simulations. This revised version also includes recent developments in precorrected-FFT accelerated O(N log N) low- and high-order boundary element methods for the computation of fully nonlinear wave-wave and wave-body interactions.Theory and Applications of Ocean Surface Waves (2016) will be invaluable for graduate students and researchers in coastal and ocean engineering, geophysical fluid dynamicists interested in water waves, and theoretical scientists and applied mathematicians wishing to develop new techniques for challenging problems or to apply techniques existing elsewhere.
Preface to Part 1 of 2017 Edition vii
Preface to the Expanded Edition ix
Preface to the First Edition xi
Acknowledgments xv
Theory and Applications of Ocean Surface Waves: Part 1-Linear Aspects
1 Introduction
3(20)
1.1 Review of Basic Formulation for an Incompressible Fluid of Constant Density
4(4)
1.1.1 Governing Equations
4(2)
1.1.2 Boundary Conditions for an Inviscid Irrotational Flow
6(2)
1.2 Linearized Approximation for Small-Amplitude Waves
8(3)
1.3 Elementary Notions of a Propagating Wave
11(2)
1.4 Progressive Water Waves on Constant Depth
13(4)
1.5 Group Velocity
17(6)
1.5.1 A Kinematic View
17(1)
1.5.2 A Dynamic View: Energy Flux
18(5)
2 Propagation of Transient Waves in Open Water of Essentially Constant Depth
23(44)
2.1 Two-Dimensional Transient Problems
23(17)
2.1.1 Transient Disturbance Due to an Initial Displacement on the Free Surface
26(6)
2.1.2 Energy Propagation, Group Velocity
32(1)
2.1.3 Leading Waves Due to a Transient Disturbance
33(2)
2.1.4 Tsunami Due to Tilting of the Bottom
35(5)
2.2 Three-Dimensional Transient Response to Bottom Disturbances
40(13)
2.2.1 Two-Dimensional Tsunami Due to Impulsive Bottom Displacement
44(6)
2.2.2 Leading Waves of a Two-Dimensional Tsunami
50(3)
2.3 The Propagation of a Dispersive Wave Packet
53(4)
2.4 Slowly Varying Wavetrain by Multiple-Scales Analysis
57(10)
2.4.1 Evolution Equation for the Wave Envelope
57(4)
2.4.2 Evolution of the Front of a Wavetrain
61(6)
3 Refraction by Slowly Varying Depth or Current
67(58)
3.1 Geometrical Optics Approximation for Progressive Waves Over a Gradually Varying Bottom
68(4)
3.2 Ray Theory for Sinusoidal Waves, Fermat's Principle
72(3)
3.3 Straight and Parallel Depth Contours
75(9)
3.3.1 Geometry of Rays
75(5)
3.3.2 Amplitude Variation
80(1)
3.3.3 The Neighborhood of a Straight Caustic
81(3)
3.4 Circular Depth Contours
84(14)
3.4.1 Geometry of Rays
84(8)
3.4.2 Amplitude Variation
92(6)
3.5 An Approximate Equation Combining Diffraction and Refraction on a Slowly Varying Bottom-The Mild-Slope Equation
98(5)
3.6 Geometrical Optics Approximation for Refraction by Slowly Varying Current and Depth
103(9)
3.7 Physical Effects of Simple Steady Currents on Waves
112(13)
3.7.1 Uniform Current on Constant Depth
112(2)
3.7.2 Oblique Incidence on a Shear Current Over Constant Depth
114(6)
3.7.3 Colinear Waves and Current
120(5)
4 Long Waves of Infinitesimal Amplitude Over Bottom with Appreciable Variations
125(78)
4.1 Formulation of Linearized Long-Wave Theory
125(7)
4.1.1 Governing Equations
125(3)
4.1.2 Quasi-One-Dimensional Waves in a Long Channel of Slowly Varying Cross Section
128(1)
4.1.3 Further Remarks on the Radiation Condition
129(3)
4.2 Straight Depth Discontinuity-Normal Incidence
132(13)
4.2.1 The Solution
132(5)
4.2.2 Justification of the Matching Conditions at the Junction
137(4)
4.2.3 The Near Field for a Rectangular Step
141(4)
4.3 Straight Depth Discontinuity-Oblique Incidence
145(3)
4.4 Scattering by a Shelf or Trough of Finite Width
148(5)
4.5 Transmission and Reflection by a Slowly Varying Depth
153(6)
4.6 Trapped Waves on a Stepped Ridge
159(6)
4.7 Some General Features of One-Dimensional Problems-Trapped Modes and the Scattering Matrix
165(9)
4.7.1 A Qualitative Discussion of Trapped Waves
165(2)
4.7.2 The Scattering Matrix [ S(alpha)]
167(2)
4.7.3 Trapped Modes as Imaginary Poles of [ S(alpha)]
169(2)
4.7.4 Properties of [ S(alpha)] for Real alpha
171(3)
4.8 Edge Waves on a Constant Slope
174(2)
4.9 Circular Bottom Contours
176(7)
4.9.1 General Aspects
176(3)
4.9.2 Scattering of Plane Incident Waves by a Circular Sill
179(4)
4.10 Head-Sea Incidence on a Slender Topography-The Parabolic Approximation
183(5)
4.11 A Numerical Method Based on Finite Elements
188(13)
4.11.1 Introduction
188(2)
4.11.2 The Variational Principle
190(3)
4.11.3 Finite-Element Approximation
193(8)
Appendix 4.A: Partial Wave Expansion of the Plane Wave
201(2)
5 Harbor Oscillations Excited by Incident Long Waves
203(76)
5.1 Introduction
203(2)
5.2 Formulation for Harbor Oscillation Problems
205(2)
5.3 Natural Modes in a Closed Basin of Simple Form and Constant Depth
207(3)
5.3.1 A Rectangular Basin
207(2)
5.3.2 A Circular Basin
209(1)
5.4 Concept of Radiation Damping-A Model Example
210(4)
5.5 Diffraction Through a Narrow Gap
214(6)
5.6 Scattering by a Long and Narrow Canal or a Bay
220(8)
5.6.1 General Solution
220(4)
5.6.2 An Open Narrow Bay
224(4)
5.7 A Rectangular Harbor with a Narrow Entrance
228(14)
5.7.1 Solution by Matched Asymptotic Expansions
230(4)
5.7.2 Resonant Spectrum and Response for Non-Helmholtz Modes
234(3)
5.7.3 The Helmholtz Mode
237(1)
5.7.4 Numerical Results and Experiments
238(3)
5.7.5 Effects of Finite Entry Channel
241(1)
5.8 The Effect of Protruding Breakwater
242(12)
5.8.1 Representation of Solution
243(2)
5.8.2 Reduction to an Integral Equation
245(2)
5.8.3 Approximate Solution by Variational Method
247(2)
5.8.4 Numerical Results
249(5)
5.9 A Harbor with Coupled Basins
254(3)
5.10 A Numerical Method for Harbors of Complex Geometry
257(5)
5.11 Harbor Response to Transient Incident Wave
262(10)
Appendix 5.A: The Source Function for a Rectangular Basin
272(1)
Appendix 5.B: Summation of the G Series
273(2)
Appendix 5.C: Proof of a Variational Principle
275(1)
Appendix 5.D: Evaluation of an Integral
276(3)
6 Effects of Head Loss at a Constriction on the Scattering of Long Waves: Hydraulic Theory
279(30)
6.1 One-Dimensional Scattering by a Slotted or Perforated Breakwater
280(15)
6.1.1 The Field Equations
280(2)
6.1.2 The Matching Conditions and the Near Field
282(2)
6.1.3 The Coefficients f and L
284(3)
6.1.4 Equivalent Linearization
287(1)
6.1.5 Approximate and Exact Solutions
288(7)
6.2 Effect of Entrance Loss on Harbor Oscillations
295(11)
6.2.1 The Boundary-Value Problem
296(2)
6.2.2 Local and Mean Square Response in the Harbor
298(2)
6.2.3 Approximations for Narrow Entrance
300(1)
6.2.4 Small Radiation and Friction Damping
301(2)
6.2.5 Large Friction Damping
303(1)
6.2.6 Numerical Results for General W
304(2)
Appendix 6.A: Approximations of an Integral for ka is much < 1
306(3)
7 Multiple Scattering by Seabed Irregularities
309(30)
7.1 Field Evidence of Periodic Longshore Bars
310(2)
7.2 Evolution Equations for Bragg-Scattering
312(5)
7.3 Normal Incidence
317(8)
7.3.1 Subcritical Detuning: 0 < omega which is < omega0
318(1)
7.3.2 Supercritical Detuning: omega > omega0
318(7)
7.4 Randomly Rough Seabed-Envelope Equation
325(6)
7.5 Change of Wave Amplitude by Disorder
331(2)
7.6 Change of Wavenumber by Disorder
333(2)
Appendix 7.A: Explicit Evaluation of the Coefficient beta
335(4)
8 Wave-Structure Interactions and Wave Energy Conversion
339(134)
8.1 Introduction
339(3)
8.2 Linearizd Equations of Motion for a Constrained Floating Body
342(16)
8.2.1 The Kinematic Condition
342(3)
8.2.2 Conservation of Linear Momentum
345(3)
8.2.3 Conservation of Angular Momentum
348(6)
8.2.4 Summary of Dynamic Equations for a Floating Body in Matrix Form
354(4)
8.3 Simple Harmonic Motion
358(4)
8.3.1 Decomposition into Diffraction and Radiation Problems
358(2)
8.3.2 Exciting and Restoring Forces; Added Mass and Radiation Damping for a Body of Arbitrary Shape
360(2)
8.4 Formal Representations of Velocity Potential when h = Constant
362(8)
8.4.1 Away from the Body
362(4)
8.4.2 The Entire Fluid Domain
366(4)
8.5 Scattering by a Vertical Cylinder with Circular Cross Section
370(7)
8.6 General Identities for the Diffraction and Radiation of Simple Harmonic Waves
377(12)
8.6.1 Relations between Two Radiation Problems and their Consequences
378(2)
8.6.2 Relations between Two Diffraction Problems
380(5)
8.6.3 One Diffraction Problem and One Radiation Problem
385(4)
8.7 Numerical Solution by Hybrid Element Method
389(10)
8.7.1 The Variational Formulation
390(2)
8.7.2 The Approximate Solution
392(3)
8.7.3 A Numerical Example
395(4)
8.8 Remarks on the Numerical Methods by Integral Equations
399(5)
8.8.1 The Integral Equations
399(2)
8.8.2 Irregular Frequencies
401(3)
8.9 Wave Power Extraction
404(33)
8.9.1 Introduction
404(3)
8.9.2 Optimum Efficiency of Three-Dimensional Absorbers
407(14)
8.9.3 A Two-Dimensional Beam-Sea Absorber-Salter's Cam (Duck)
421(6)
8.9.4 Circular Buoy Converter
427(3)
8.9.5 Oscillating Water Column (OWC)
430(7)
8.10 Trapped Modes Near a Mobile Storm Barrier
437(10)
8.10.1 The Two-Gate Mode in an Infinitely Long Barrier
439(4)
8.10.2 Multi-Gate Modes in a Barrier of Finite Length
443(4)
8.11 Drift Forces
447(7)
8.12 Principles of Calculating the Transient Motion of a Floating Body
454(8)
8.12.1 Radiated Waves Caused by Impulsive Motion of a Floating Body
454(3)
8.12.2 Relation to the Frequency Response
457(2)
8.12.3 Exciting Force Caused by Scattering of Transient Incident Waves
459(2)
8.12.4 Linearized Equations of Transient Motion of a Floating Body
461(1)
Appendix 8.A: Derivation of Green's Function
462(4)
Appendix 8.B: Radiation Problem for a Heaving Buoy
466(3)
Appendix 8.C: Radiation Problem for OWC
469(4)
9 Damping of Small-Amplitude Waves
473(56)
9.1 Introduction
473(1)
9.2 Linearized Equations of Viscous Flows and the Laminar Boundary Layer
473(4)
9.3 Damping Rate and the Process of Energy Transfer
477(8)
9.3.1 The Entire Fluid
481(1)
9.3.2 Meniscus Boundary Layer
482(1)
9.3.3 Wall Boundary Layer
483(1)
9.3.4 Interior Core
484(1)
9.3.5 The Damping Rate
484(1)
9.4 Damping Rate by a Perturbation Analysis
485(6)
9.5 Details for Standing Waves in a Circular Basin
491(6)
9.6 The Effect of Air on the Damping of Deep Water Waves
497(5)
9.7 The Turbulent Boundary Layer Near a Rough Bottom
502(7)
9.7.1 The Boundary-Layer Structure
502(3)
9.7.2 The Friction Coefficient
505(2)
9.7.3 Bottom Friction on the Damping of Standing Shallow-Water Waves in a Basin
507(2)
9.8 Waves Through a Model Marine Forest
509(19)
9.8.1 A Simple Model of Interstitial Turbulence
510(2)
9.8.2 Governing Equations for the Interstitial Flow
512(3)
9.8.3 Sinusoidal Waves
515(7)
9.8.4 Transient Waves
522(5)
9.8.5 Further Development
527(1)
Appendix 9.A: An Equipartition Theorem
528(1)
References
529(20)
Subject Index
I-1
Theory and Applications of Oceans Surface Waves: Part 2: Nonlinear Aspects
Preface to Part 2 of 2017 Edition
vii
Preface to Part 2
ix
10 Mass Transport Due to Viscosity
549(38)
10.1 Introduction
549(1)
10.2 Mass Transport Near the Sea Bottom-General Theory
550(8)
10.3 Bottom Mass Transport Under a Long Crested Wave
558(9)
10.4 Bottom Mass Transport Near a Small Structure
567(5)
10.5 Remarks on Induced Streaming Outside the Stokes Boundary Layer
572(4)
10.6 Creeping Flow Theory of Mass Transport in a Channel of Finite Depth
576(9)
10.7 Further References
585(2)
11 Radiation Stresses, Bound Long Waves and Longshore Current
587(64)
11.1 Introduction
587(2)
11.2 Depth and Time-Averaged Equations for the Mean Motion
589(12)
11.2.1 Averaged Equation of Mass Conservation
590(1)
11.2.2 Averaged Equations of Momentum Conservation
591(4)
11.2.3 Some Preliminary Simplifications
595(5)
11.2.4 Summary of Approximate Averaged Equations
600(1)
11.3 Radiation Stresses in the Shoaling Zone-Small-Amplitude Waves on Constant or Nearly Constant Depth
601(4)
11.4 Long Waves Forced by Radiation Stress of Short Waves
605(5)
11.4.1 Set-Down or Bound Long Wave
606(1)
11.4.2 Parasitic Long Seiches in a Wave Flume
607(3)
11.5 Empirical Knowledge of Breaking Waves
610(5)
11.5.1 Breaking of Standing Waves on a Slope
610(2)
11.5.2 Types of Breakers on Mild Beaches
612(1)
11.5.3 Maximum Wave Height
613(2)
11.6 The Structure of a Uniform Longshore Current on a Plane Beach
615(8)
11.6.1 Shoaling Zone: x > xb
615(3)
11.6.2 Surf Zone: x < xb
618(5)
11.7 Other Empirical Hypotheses or Improvements
623(7)
11.7.1 Bottom Friction
623(5)
11.7.2 Lateral Turbulent Diffusion S"xy
628(2)
11.8 Currents Behind an Offshore Breakwater
630(12)
11.8.1 The Wave Field
632(5)
11.8.2 The Mean Motion
637(5)
11.9 Currents Around a Conical Island
642(6)
11.9.1 The Wave Field
643(1)
11.9.2 The Mean Motion
643(5)
11.10 Related Works on Nearshore Currents
648(3)
12 Nonlinear Long Waves in Shallow Water
651(136)
12.1 Derivation and Classification of Approximate Equations
651(9)
12.2 Nondispersive Waves in Water of Constant Depth
660(10)
12.2.1 Analogy to Gas Dynamics
660(1)
12.2.2 Method of Characteristics for One-Dimensional Problems
661(4)
12.2.3 Simple Waves and Constant States
665(1)
12.2.4 Expansion and Compression Waves-Tendency of Breaking
666(4)
12.3 Nonbreaking Waves on a Slope
670(12)
12.3.1 Standing Waves of Finite Amplitude
673(4)
12.3.2 Matching with Deep Water
677(3)
12.3.3 Transient Responses to Initial Inputs
680(2)
12.4 Subharmpnic Resonance of Edge Waves
682(14)
12.4.1 Perfect Tuning
684(6)
12.4.2 Effects of Detuning
690(6)
12.5 Dispersive Long Waves of Permanent Form and the Korteweg-De Vries (KdV) Equation
696(10)
12.5.1 Solitary Waves
697(2)
12.5.2 Cnoidal Waves
699(6)
12.5.3 The Korteweg-de Vries (KdV) Equation
705(1)
12.6 Nonlinear Dispersive Standing Waves on a Horizontal Bottom
706(4)
12.7 Evolution of an Initial Pulse
710(7)
12.8 Fission of Solitons by Decreasing Depth
717(4)
12.9 Viscous Damping of Solitary Waves
721(8)
12.10 Remarks on Modeling Large-Scale Tsunamis
729(7)
12.11 Evolution of Periodic Waves Over Constant Depth-Harmonic Generation
736(16)
12.11.1 The Initial Development of Near-Resonant Interaction in Water of Constant Depth
739(4)
12.11.2 Governing Equations for Coupled Harmonics
743(2)
12.11.3 Exact Solution of the Two-Harmonics Problem
745(7)
12.12 Nonlinear Resonance in a Narrow Bay
752(8)
12.13 Solitons Ahead of a Ship Advancing in a River
760(12)
12.14 Localization of Solitons Over a Randomly Rough Seabed
772(8)
12.14.1 Asymptotic Equation for Uni-Directional Waves
772(5)
12.14.2 Gaussian Correlation Function
777(2)
12.14.3 Computed Results of Soliton Evolution Over a Long Rough Seabed
779(1)
Appendix 12.A: Evaluation of Certain Integrals in Section 12.4
780(2)
Appendix 12.B: Reduction of an Integral in Section 12.9
782(1)
Appendix 12.C: The Square of a Fourier Series
783(1)
Appendix 12.D: Details of Random Forcing
784(1)
Appendix 12.E: Details of beta
785(2)
13 Narrow-Banded Nonlinear Waves in Water of Intermediate or Great Depth
787(98)
13.1 Introduction
787(2)
13.2 Evolution Equations for Slowly Modulated Weakly Nonlinear Waves Over Horizontal Seabed
789(11)
13.2.1 Intermediate Depth
789(9)
13.2.2 Deep Water Limit
798(2)
13.3 Uniform Stokes' Waves
800(2)
13.4 Side-Band Instability of Stokes' Waves
802(10)
13.5 Permanent Envelopes in Deep Water: Nonlinear Solutions of the Evolution Equation
812(4)
13.6 Transient Evolution of One-Dimensional Wave Envelope on Deep Water
816(18)
13.6.1 Evolution of a Single Pulse
821(5)
13.6.2 Evolution of the Front of a Uniform Wavetrain
826(2)
13.6.3 Periodic Modulation of a Uniform Wavetrain-Evolution Beyond the Initial Stage of Instability
828(3)
13.6.4 Rogue Waves
831(3)
13.7 Infragravity Waves Over Slowly Varying Depth
834(13)
13.7.1 Equation for Long Waves Forced by One Train of Short Waves
834(4)
13.7.2 Short-Wave Envelope
838(3)
13.7.3 Mean Sea-Level
841(2)
13.7.4 Free and Bound Infragravity Waves
843(4)
13.8 Infragravity Waves Over Periodic Bars
847(6)
13.9 Remarks on Third-Order Effects of Short Waves Over Slowing Varying Depth
853(1)
13.10 Diffraction of Steady Stokes' Waves by a Thin Wedge or a Slightly Slanted Breakwater
854(7)
13.11 Soliton Envelopes in the Wake of a Ship
861(9)
13.12 Second-Order Diffraction by a Vertical Cylinder
870(11)
13.12.1 First-Order Solution
871(1)
13.12.2 The Second-Order Problem
872(1)
13.12.3 Second-Order Forcing
873(2)
13.12.4 Second-Order Boundary-Value Problems
875(1)
13.12.5 Response to I
875(2)
13.12.6 Response to S
877(4)
13.12.7 Sample Numerical Results
881(1)
Appendix 13.A: Asymptotic Behavior epsilon0 in the Far-Field
881(1)
Appendix 13.B: Weak Radiation Condition
882(3)
14 Broad-Banded Nonlinear Surface Waves in the Open Sea
885(50)
14.1 Background
886(2)
14.2 Fourier Formulation
888(4)
14.3 Multiple Time Scales
892(5)
14.4 Conditions for Quartet Resonance
897(3)
14.5 Simple Solutions
900(2)
14.6 Interaction of Two Waves
902(1)
14.7 Interaction of Four Waves (Quartet Interaction)
903(9)
14.7.1 Reduction to One Unknown
904(3)
14.7.2 Solution for Periodic Envelopes
907(3)
14.7.3 Steady-State Quartets
910(2)
14.8 The Cubic Schrodinger Equation
912(2)
14.9 Benjamin-Feir Instability of Stokes Waves
914(6)
14.10 Kinetic Equation of Hasselmann
920(5)
14.11 Extensions
925(2)
Appendix 14.A: Details of Derivation
927(4)
Appendix 14.A.1 Fourier Transforms of the Free Surface Conditions
927(1)
Appendix 14.A.2 Surface Properties for Waves of Small Steepness
928(1)
Appendix 14.A.3 Inverting (14.2.9) by Iteration
929(2)
Appendix 14.B: Kernels
931(4)
15 Simulation of Nonlinear Wave Dynamics
935(202)
15.1 Introduction
935(2)
15.2 General Initial Boundary-Value Problem
937(1)
15.3 High-Order Spectral (HOS) Method
938(14)
15.3.1 Mathematical Formulation
940(6)
15.3.2 Numerical Implementation
946(1)
15.3.3 Error Considerations
947(3)
15.3.4 Relation to Frequency-Domain Perturbation Results
950(2)
15.4 Applications of HOS to Nonlinear Wave-Wave, Wave-Current, and Wave-Bottom Interactions
952(40)
15.4.1 Stokes Waves
952(3)
15.4.2 Wave Steepening
955(3)
15.4.3 Modulation of a Stokes Wave Train Due to Type I Instabilities
958(4)
15.4.4 Evolution of a Wave Packet
962(3)
15.4.5 Nonlinear Three-Dimensional Waves Due to a Moving Surface Disturbance
965(7)
15.4.6 Nonlinear Wave Interaction with Ambient Current
972(7)
15.4.7 Generalized Bragg Scattering of Surface Waves by Bottom Ripples
979(13)
15.5 HOS Method for Nonlinear Wave Interaction with Submerged Bodies
992(12)
15.5.1 Mathematical Formulation
992(2)
15.5.2 Numerical Implementation
994(2)
15.5.3 Application to Nonlinear Wave Diffraction by A Submerged Circular Cylinder
996(8)
15.6 High-Order Spectral Element (HOSE) Method
1004(15)
15.6.1 Mathematical Formulation
1005(3)
15.6.2 Numerical Implementation
1008(4)
15.6.3 Application of HOSE to the Study of Stability of Standing Waves in a Circular Tank
1012(7)
15.7 Nonlinear Wave-Field Evolution by Large-Scale HOS Computations
1019(27)
15.7.1 Direct Wave-Field Simulation Using HOS
1021(3)
15.7.2 Spectral Evolution and Nonlinear Wave Statistics
1024(9)
15.7.3 Probability of Rogue Wave Occurrence
1033(13)
15.8 Mixed Euler-Lagrangian Method
1046(68)
15.8.1 Cauchy's Integral Formulation
1047(3)
15.8.2 Green's Integral Formulation
1050(7)
15.8.3 Numerical Implementation
1057(5)
15.8.4 Application to Two-and Three-Dimensional Breaking Waves
1062(18)
15.8.5 Application to Steep Crescent Waves
1080(8)
15.8.6 Application to Free-Surface Flow Over an Impulsively Started Point Sink
1088(8)
15.8.7 Application to Plunging Wave Impact on a Vertical Wall
1096(10)
15.8.8 Application to Nonlinear Wave Interaction with Floating Bodies
1106(8)
15.9 PFFT-Accelerated Boundary Element Methods
1114(23)
15.9.1 Mathematical Formulation
1116(6)
15.9.2 Determination of Interpolation Function H(epsilon)
1122(2)
15.9.3 Numerical Implementation
1124(2)
15.9.4 Accuracy and Efficiency of the PFFT Algorithm
1126(4)
15.9.5 Comparison of PFFT-QBEM with PFFT-CPM
1130(2)
15.9.6 PFFT-BEMs for Fully-Nonlinear Initial Boundary-Value Problems
1132(5)
References
1137
Subject Index
I-1