Atjaunināt sīkdatņu piekrišanu

E-grāmata: Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part I

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 9985
  • Izdošanas datums: 21-Oct-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662536414
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 9985
  • Izdošanas datums: 21-Oct-2016
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662536414
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The two-volume set LNCS 9985 and LNCS 9986 constitutes the refereed proceedings of the 14th International Conference on Theory of Cryptography, TCC 2016-B, held in Beijing, China, in November 2016.The total of 45 revised full papers presented in the proceedings were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: TCC test-of-time award; foundations; unconditional security; foundations of multi-party protocols; round complexity and efficiency of multi-party computation; differential privacy; delegation and IP; public-key encryption; obfuscation and multilinear maps; attribute-based encryption; functional encryption; secret sharing; new models.

TCC Test-of-Time Award.- From Indifferentiability to Constructive Cryptography (and Back).- Foundations.- Fast Pseudorandom Functions Based on Expander Graphs.- 3-Message Zero Knowledge Against Human Ignorance.- The GGM Function Family is a Weakly One-Way Family of Functions.- On the (In)security of SNARKs in the Presence of Oracles.- Leakage Resilient One-Way Functions: The Auxiliary-Input Setting.- Simulating Auxiliary Inputs, Revisited.- Unconditional Security.- Pseudoentropy: Lower-bounds for Chain rules and Transformations.- Oblivious Transfer from Any Non-Trivial Elastic Noisy Channel via Secret Key Agreement.- Simultaneous Secrecy and Reliability Amplification for a General Channel Model.- Proof of Space from Stacked Expanders.- Perfectly Secure Message Transmission in Two Rounds.- Foundations of Multi-Party Protocols.- Almost-Optimally Fair Multiparty Coin-Tossing with Nearly Three-Quarters Malicious.- Binary AMD Circuits from Secure Multiparty Computation.- Composable Sec

urity in the Tamper-Proof Hardware Model under Minimal Complexity.- Composable Adaptive Secure Protocols without Setup under Polytime Assumptions.- Adaptive Security of Yao"s Garbled Circuits.- Round Complexity and Efficiency of Multi-Party Computation.- Efficient Secure Multiparty Computation with Identifiable Abort.- Secure Multiparty RAM Computation in Constant Rounds.- Constant-Round Maliciously Secure Two-Party Computation in the RAM Model.- More Efficient Constant-Round Multi-Party Computation from BMR and SHE.- Cross&Clean: Amortized Garbled Circuits With Constant Overhead.- Differential Privacy.- Separating Computational and Statistical Differential Privacy in the Client-Server Model.- Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds.- Strong Hardness of Privacy from Weak Traitor Tracing.
TCC Test-of-Time Award.- From Indifferentiability to Constructive
Cryptography (and Back).- Foundations.- Fast Pseudorandom Functions Based on
Expander Graphs.- 3-Message Zero Knowledge Against Human Ignorance.- The GGM
Function Family is a Weakly One-Way Family of Functions.- On the (In)security
of SNARKs in the Presence of Oracles.- Leakage Resilient One-Way Functions:
The Auxiliary-Input Setting.- Simulating Auxiliary Inputs, Revisited.-
Unconditional Security.- Pseudoentropy: Lower-bounds for Chain rules and
Transformations.- Oblivious Transfer from Any Non-Trivial Elastic Noisy
Channel via Secret Key Agreement.- Simultaneous Secrecy and Reliability
Amplification for a General Channel Model.- Proof of Space from Stacked
Expanders.- Perfectly Secure Message Transmission in Two Rounds.- Foundations
of Multi-Party Protocols.- Almost-Optimally Fair Multiparty Coin-Tossing with
Nearly Three-Quarters Malicious.- Binary AMD Circuits from Secure Multiparty
Computation.- Composable Security in the Tamper-Proof Hardware Model under
Minimal Complexity.- Composable Adaptive Secure Protocols without Setup under
Polytime Assumptions.- Adaptive Security of Yaos Garbled Circuits.- Round
Complexity and Efficiency of Multi-Party Computation.- Efficient Secure
Multiparty Computation with Identifiable Abort.- Secure Multiparty RAM
Computation in Constant Rounds.- Constant-Round Maliciously Secure Two-Party
Computation in the RAM Model.- More Efficient Constant-Round Multi-Party
Computation from BMR and SHE.- Cross&Clean: Amortized Garbled Circuits With
Constant Overhead.- Differential Privacy.- Separating Computational and
Statistical Differential Privacy in the Client-Server Model.- Concentrated
Differential Privacy: Simplifications, Extensions, and Lower Bounds.- Strong
Hardness of Privacy from Weak Traitor Tracing.