Atjaunināt sīkdatņu piekrišanu

Theory of Finslerian Laplacians and Applications Softcover reprint of the original 1st ed. 1998 [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 282 pages, height x width: 240x160 mm, weight: 508 g, XXX, 282 p., 1 Paperback / softback
  • Sērija : Mathematics and Its Applications 459
  • Izdošanas datums: 10-Oct-2012
  • Izdevniecība: Springer
  • ISBN-10: 9401062234
  • ISBN-13: 9789401062237
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 282 pages, height x width: 240x160 mm, weight: 508 g, XXX, 282 p., 1 Paperback / softback
  • Sērija : Mathematics and Its Applications 459
  • Izdošanas datums: 10-Oct-2012
  • Izdevniecība: Springer
  • ISBN-10: 9401062234
  • ISBN-13: 9789401062237
Finslerian Laplacians have arisen from the demands of modelling the modern world. However, the roots of the Laplacian concept can be traced back to the sixteenth century. Its phylogeny and history are presented in the Prologue of this volume. The text proper begins with a brief introduction to stochastically derived Finslerian Laplacians, facilitated by applications in ecology, epidemiology and evolutionary biology. The mathematical ideas are then fully presented in section II, with generalizations to Lagrange geometry following in section III. With section IV, the focus abruptly shifts to the local mean-value approach to Finslerian Laplacians and a Hodge-de Rham theory is developed for the representation on real cohomology classes by harmonic forms on the base manifold. Similar results are proved in sections II and IV, each from different perspectives. Modern topics treated include nonlinear Laplacians, Bochner and Lichnerowicz vanishing theorems, Weitzenböck formulas, and Finslerian spinors and Dirac operators. The tools developed in this book will find uses in several areas of physics and engineering, but especially in the mechanics of inhomogeneous media, e.g. Cofferat continua. Audience: This text will be of use to workers in stochastic processes, differential geometry, nonlinear analysis, epidemiology, ecology and evolution, as well as physics of the solid state and continua.

Papildus informācija

Springer Book Archives
Section I. Finsler Laplacians in Application.- to Diffusions on Finsler
Manifolds.- Density Dependent Host/Parasite Systems of Rothschild Type and
Finslerian Diffusion.- Stochastic Finsler Geometry in the Theory of Evolution
by Symbiosis.- Section II. Stochastic Analysis and Brownian Motion.-
Diffusions on Finsler Manifolds.- Stochastic Calculus on Finsler Manifolds
and an Application in Biology.- Diffusion on the Tangent and Indicatrix
Bundles of a Finsler Manifold.- Section III. Stochastic Lagrange Geometry.-
Diffusion on the Total Space of a Vector Bundle.- Diffusions and Laplacians
on Lagrange Manifolds.- ?-Lagrange Laplacians.- Section IV. Mean-Value
Properties of Harmonic Functions.- Diffusion, Laplacian and Hodge
Decomposition on Finsler Spaces.- A Mean-Value Laplacian for Finsler Spaces.-
Section V. Analytical Constructions.- The Non-Linear Laplacian for Finsler
Manifolds.- A Bochner Vanishing Theorem for Elliptic Complices.- A
Lichnerowicz Vanishing Theorem for Finsler Spaces.- A Geometric Inequality
and a Weitzenböck Formula for Finsler Surfaces.- Spinors on Finsler Spaces.