Atjaunināt sīkdatņu piekrišanu

Thermal Energy Harvesting for Application at MEMS Scale 1st ed. 2014 [Mīkstie vāki]

  • Formāts: Paperback / softback, 71 pages, height x width: 235x155 mm, weight: 1358 g, 28 Illustrations, color; 6 Illustrations, black and white; VIII, 71 p. 34 illus., 28 illus. in color., 1 Paperback / softback
  • Sērija : SpringerBriefs in Electrical and Computer Engineering
  • Izdošanas datums: 11-Oct-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461492149
  • ISBN-13: 9781461492146
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 71 pages, height x width: 235x155 mm, weight: 1358 g, 28 Illustrations, color; 6 Illustrations, black and white; VIII, 71 p. 34 illus., 28 illus. in color., 1 Paperback / softback
  • Sērija : SpringerBriefs in Electrical and Computer Engineering
  • Izdošanas datums: 11-Oct-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461492149
  • ISBN-13: 9781461492146
Citas grāmatas par šo tēmu:
This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power. A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.
1 An Introduction to Waste Heat Capture and MEMS
1(6)
1.1 Waste Heat and Waste Heat Resources
1(3)
1.2 Approaches to Waste Thermal Energy Harvesting
4(1)
1.3 MEMS Technology for Thermal Energy Harvesting
4(1)
1.4 Macro and Micro Electro Mechanical Systems
5(2)
References
6(1)
2 Established Thermomechanical Heat Engine Cycles
7(18)
2.1 The Stirling Cycle
7(4)
2.1.1 Theoretical Stirling Cycle
8(1)
2.1.2 Practical Macro Stirling Engines
8(2)
2.1.3 MEMS Stirling Engines
10(1)
2.2 The Brayton Cycle
11(3)
2.2.1 Theoretical Brayton Cycle
11(1)
2.2.2 Practical Macro Brayton Engines
12(1)
2.2.3 MEMS Brayton Engines
13(1)
2.3 Rankine Cycle and Other Vapor Cycles
14(5)
2.3.1 Theoretical Rankine Cycle
14(1)
2.3.2 Practical Macro Rankine Engines
15(1)
2.3.3 MEMS Vapor Cycle Engines
16(3)
2.4 The Ericsson Cycle
19(6)
2.4.1 Theoretical Ericsson Cycle
19(2)
2.4.2 Practical Ericsson Engines
21(1)
2.4.3 MEMS Ericsson Engines
22(1)
References
22(3)
3 Other Thermomechanical Heat Engines
25(16)
3.1 Thermoacoustic Heat Engines
25(3)
3.1.1 Thermoacoustic Travelling Wave Heat Engines
26(1)
3.1.2 Thermoacoustic Standing Wave Heat Engines
27(1)
3.1.3 Thermoacoustic Heat Engines at MEMS Scale
28(1)
3.2 Shape Memory Alloy Heat Engines
28(3)
3.2.1 Shape Memory Alloy Heat Engine at MEMS Scale
30(1)
3.3 Thermomagnetic Generators
31(5)
3.3.1 Potential of Thermomagnetic Generators at MEMS Scale
35(1)
3.4 Hydride Heat Engine
36(5)
3.4.1 Potential of Hydride Heat Engines at MEMS Scale
38(1)
References
38(3)
4 Mechanical to Electrical Conversion
41(10)
4.1 Electromagnetic Generators
41(3)
4.2 Piezoelectric Generators
44(2)
4.3 Electrostatic Transducers
46(2)
4.4 Reverse Electro-Wetting Generators
48(3)
References
49(2)
5 Thermal to Electrical Energy Converters
51(18)
5.1 Thermionic Generators
51(2)
5.1.1 Potential of Thermionic Generators at MEMS Scale
53(1)
5.2 Pyroelectric Generators
53(2)
5.2.1 Pyroelectric Cycles
54(1)
5.2.2 Performance of Pyroelectric Energy Generators
55(1)
5.3 Seebeck Thermoelectric Generators
55(3)
5.3.1 Applications of Seebeck Devices
57(1)
5.4 Alkali Metal Thermal-to-Electric Converters
58(1)
5.4.1 Potential of AMTEC at MEMS Scale
59(1)
5.5 Johnson Electro Mechanical Systems
59(2)
5.5.1 Johnson Thermo Electrochemical Converter System
59(1)
5.5.2 Johnson Electrochemical Heat Pipe
60(1)
5.5.3 Potential of JTEC and JEHP at MEMS Scale
60(1)
5.6 Infrared Photovoltaic Harvesters
61(8)
5.6.1 Multi-junction PV
62(1)
5.6.2 Quantum-Dot PV
63(1)
5.6.3 Organic Solar Cells
63(1)
5.6.4 Energy Harvesting Applications
64(1)
References
64(5)
Index 69