Atjaunināt sīkdatņu piekrišanu

Thinking Algebraically: An Introduction to Abstract Algebra [Mīkstie vāki]

  • Formāts: Paperback / softback, 592 pages, weight: 885 g
  • Sērija : AMS/MAA Textbooks
  • Izdošanas datums: 30-Aug-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470460300
  • ISBN-13: 9781470460303
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 592 pages, weight: 885 g
  • Sērija : AMS/MAA Textbooks
  • Izdošanas datums: 30-Aug-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470460300
  • ISBN-13: 9781470460303
Citas grāmatas par šo tēmu:
Thinking Algebraically presents the insights of abstract algebra in a welcoming and accessible way. It succeeds in combining the advantages of rings-first and groups-first approaches while avoiding the disadvantages. After an historical overview, the first chapter studies familiar examples and elementary properties of groups and rings simultaneously to motivate the modern understanding of algebra. The text builds intuition for abstract algebra starting from high school algebra. In addition to the standard number systems, polynomials, vectors, and matrices, the first chapter introduces modular arithmetic and dihedral groups. The second chapter builds on these basic examples and properties, enabling students to learn structural ideas common to rings and groups: isomorphism, homomorphism, and direct product. The third chapter investigates introductory group theory. Later chapters delve more deeply into groups, rings, and fields, including Galois theory, and they also introduce other topics, such as lattices. The exposition is clear and conversational throughout. The book has numerous exercises in each section as well as supplemental exercises and projects for each chapter. Many examples and well over 100 figures provide support for learning. Short biographies introduce the mathematicians who proved many of the results. The book presents a pathway to algebraic thinking in a semester- or year-long algebra course.
Preface ix
Topics x
Features xii
Prologue 1(1)
Exercises 1(2)
1 A Transition to Abstract Algebra 3(48)
1.1 An Historical View of Algebra
3(11)
Exercises
8(6)
1.2 Basic Algebraic Systems and Properties
14(14)
Exercises
23(5)
1.3 Functions, Symmetries, and Modular Arithmetic
28(15)
Exercises
37(6)
Supplemental Exercises
43(3)
Projects
46(5)
2 Relationships between Systems 51(48)
2.1 Isomorphisms
51(9)
Exercises
56(4)
2.2 Elements and Subsets
60(11)
Exercises
66(5)
2.3 Direct Products
71(10)
Exercises
76(5)
2.4 Homomorphisms
81(13)
Exercises
88(6)
Supplemental Exercises
94(1)
Projects
95(4)
3 Groups 99(82)
3.1 Cyclic Groups
99(9)
Exercises
103(5)
3.2 Abelian Groups
108(12)
Exercises
113(7)
3.3 Cayley Digraphs
120(7)
Exercises
124(3)
3.4 Group Actions and Finite Symmetry Groups
127(13)
Exercises
134(6)
3.5 Permutation Groups, Part I
140(10)
Exercises
145(5)
3.6 Normal Subgroups and Factor Groups
150(12)
Exercises
158(4)
3.7 Permutation Groups, Part II
162(7)
Exercises
165(4)
Supplemental Exercises
169(3)
Projects
172(9)
Appendix: The Fundamental Theorem of Finite Abelian Groups
177(4)
4 Rings, Integral Domains, and Fields 181(62)
4.1 Rings and Integral Domains
181(9)
Exercises
187(3)
4.2 Ideals and Factor Rings
190(7)
Exercises
194(3)
4.3 Prime and Maximal Ideals
197(10)
Exercises
203(4)
4.4 Properties of Integral Domains
207(12)
Exercises
215(4)
4.5 Grobner Bases in Algebraic Geometry
219(9)
Exercises
225(3)
4.6 Polynomial Dynamical Systems
228(6)
Exercises
232(2)
Supplemental Exercises
234(2)
Projects
236(7)
5 Vector Spaces and Field Extensions 243(84)
5.1 Vector Spaces
244(11)
Exercises
250(5)
5.2 Linear Codes and Cryptography
255(11)
Exercises
261(5)
5.3 Algebraic Extensions
266(11)
Exercises
273(4)
5.4 Geometric Constructions
277(13)
Exercises
286(4)
5.5 Splitting Fields
290(12)
Exercises
297(5)
5.6 Automorphisms of Fields
302(10)
Exercises
308(4)
5.7 Galois Theory and the Insolvability of the Quintic
312(10)
Exercises
319(3)
Supplemental Exercises
322(3)
Projects
325(2)
6 Topics in Group Theory 327(72)
6.1 Finite Symmetry Groups
327(14)
Exercises
335(6)
6.2 Frieze, Wallpaper, and Crystal Patterns
341(15)
Exercises
351(5)
6.3 Matrix Groups
356(14)
Exercises
364(6)
6.4 Semidirect Products of Groups
370(11)
Exercises
376(5)
6.5 The Sylow Theorems
381(10)
Exercises
388(3)
Supplemental Exercises
391(4)
Projects
395(4)
7 Topics in Algebra 399(40)
7.1 Lattices and Partial Orders
399(9)
Exercises
405(3)
7.2 Boolean Algebras
408(9)
Exercises
414(3)
7.3 Semigroups
417(9)
Exercises
422(4)
7.4 Universal Algebra and Preservation Theorems
426(7)
Exercises
431(2)
Supplemental Exercises
433(2)
Projects
435(4)
Epilogue 439(4)
Selected Answers 443(26)
Terms 469(6)
Symbols 475(2)
Names 477