Atjaunināt sīkdatņu piekrišanu

Third Generation Photovoltaics: Advanced Solar Energy Conversion 1st ed. 2003. 2nd printing 2005 [Mīkstie vāki]

3.50/5 (12 ratings by Goodreads)
  • Formāts: Paperback / softback, 160 pages, height x width: 235x155 mm, weight: 570 g, XI, 160 p., 1 Paperback / softback
  • Sērija : Springer Series in Photonics 12
  • Izdošanas datums: 06-Dec-2005
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540265627
  • ISBN-13: 9783540265627
  • Mīkstie vāki
  • Cena: 162,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 191,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 160 pages, height x width: 235x155 mm, weight: 570 g, XI, 160 p., 1 Paperback / softback
  • Sērija : Springer Series in Photonics 12
  • Izdošanas datums: 06-Dec-2005
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540265627
  • ISBN-13: 9783540265627
Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world's foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.

Recenzijas

"Martin A. Green of the University of New South Wales, Sydney, is arguably the most renowned scientist in the field of photovoltaics The book is well written, covers all the important concepts, and gives the right references. Green manages to keep the readers attention in spite of some arduous derivations Third Generation Photovoltaics will be invaluable as a reference for anyone involved in long-term photovoltaics research and useful as textbook for courses on advanced solar energy conversion." MATERIALS TODAY

Introduction
``Twenty-Twenty Vision''
1(1)
The Three Generations
1(3)
Outline of Options
4(3)
Black-Bodies, White Suns
Introduction
7(1)
Black-Body Radiation
7(3)
Black-Body in a Cavity
10(1)
Angular Dependence of Emitted Radiation
11(4)
Direct and Diffuse Efficiencies
15(1)
Black-Body Emission Properties
16(5)
Energy, Entropy and Efficiency
Introduction
21(1)
Energy and Entropy Conservation
21(1)
Carnot Efficiency
22(2)
Landsberg Limit
24(1)
Black-Body Limit
25(2)
Multi-Colour Limit
27(12)
Non-Reciprocal Systems
39
Ultimate System
30(1)
Omnidirectional Global Converters
31(1)
Summary
32(3)
Single Junction Cells
Efficiency Losses
35(3)
Shockley-Queisser Formulation
38(2)
Hot Photons (Chemical Potential of Light)
40(3)
Einstein Coefficients
43(2)
Photon Boltzmann Equation
45(4)
General Cell Analysis
49(1)
Lasing Conditions
50(1)
Photon Spatial Distributions
51(3)
Effect of Sample Thickness
54(1)
Thermodynamics of Single Junction Cell
55(4)
Tandem Cells
Spectrum Splitting and Stacking
59(1)
Split-Spectrum Cells
60(1)
Stacked Cells
61(2)
Two Terminal Operation
63(1)
Infinite Number of Cells
64(1)
Approximate Solution
65(1)
Thermodynamics of the Infinite Stack
66(3)
Hot Carrier Cells
Introduction
69(1)
Relevant Time Constants
69(3)
Ross and Nozik's Analysis
72(5)
Simplification for EG = 0
77(1)
Wurfel's Analysis
77(2)
Possible Low Dimensional Implementation
79(2)
Multiple Electron-Hole Pairs per Photon
Introduction
81(1)
Multiple-Carrier Photon Emission
82(3)
Limiting Performance
85(1)
Comparison with Wurfel's Analysis
85(1)
Possible Implementation
86(1)
Generalised Analysis
86(2)
Raman Luminescence
88(7)
Impurity Photovoltaic and Multiband Cells
Introduction
95(2)
3-Band Cell
97(1)
Photon Absorption Selectivity
98(4)
Finite Bandwidths
98(2)
Graded Absorption Coefficients
100(1)
Spatial Absorption Partitioning
100(2)
Absorption Leakage Loss
102(2)
Other Possible Multigap Schemes
104(2)
Impurity Photovoltaic Effect
106(1)
Up- and Down-Conversion
107(4)
Thermophotovoltac and Thermophotonic Conversion
Introduction
111(2)
Solar Thermal Conversion
113(1)
Thermophotovoltaic Conversion
114(4)
Black-Body Source
114(2)
With Narrow Passband Filter
116(1)
Solar Conversion: Cell/Receiver
117(1)
Thermophotonics
118(7)
Case with Filters
118(4)
Without Filter
122(3)
Conclusions
125(34)
Appendices
A: Greek Alphabet
127(2)
B: Physical Constants
129(2)
C: Fermi-Dirac and Bose-Einstein Integrals
131(6)
D: List of Symbols
137(2)
E: Quasi-Fermi Levels
139(8)
F: Solutions to Selected Problems
147(12)
Index 159