|
I Introduction to Microfit |
|
|
1 | (20) |
|
|
3 | (10) |
|
|
3 | (1) |
|
1.2 New Features of Microfit 5.0 |
|
|
3 | (4) |
|
1.2.1 New functions and commands |
|
|
5 | (1) |
|
1.2.2 Single equation estimation techniques |
|
|
5 | (1) |
|
1.2.3 System equation estimation techniques |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.4 Other features of Microfit 5.0 |
|
|
8 | (4) |
|
|
8 | (1) |
|
1.4.2 Data transformations |
|
|
8 | (1) |
|
1.4.3 High-resolution graphics |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4.7 Other single equation estimation techniques |
|
|
9 | (1) |
|
1.4.8 Model respecification |
|
|
10 | (1) |
|
1.4.9 Diagnostic tests and model selection criteria |
|
|
10 | (1) |
|
1.4.10 Variable addition and variable deletion tests |
|
|
11 | (1) |
|
1.4.11 Cointegration tests |
|
|
11 | (1) |
|
1.4.12 Testing for unit roots |
|
|
11 | (1) |
|
1.4.13 Tests of linear and non-linear restrictions |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.4.15 Static and dynamic univariate forecasts |
|
|
11 | (1) |
|
1.5 Installation and system configuration |
|
|
12 | (1) |
|
1.6 System requirements for Microfit 5.0 |
|
|
12 | (1) |
|
2 Installation and Getting Started |
|
|
13 | (8) |
|
|
13 | (1) |
|
2.1.1 Single user installation |
|
|
13 | (1) |
|
2.1.2 Network installation |
|
|
13 | (1) |
|
2.2 Starting and ending a session |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
2.3 Using windows, menus and buttons |
|
|
14 | (3) |
|
|
14 | (1) |
|
|
14 | (2) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (3) |
|
|
18 | (1) |
|
|
19 | (2) |
|
II Processing and Data Management |
|
|
21 | (52) |
|
3 Inputting and Saving Data Files |
|
|
23 | (14) |
|
3.1 Change data dimension |
|
|
23 | (1) |
|
|
23 | (7) |
|
3.2.1 Inputting data from the keyboard |
|
|
24 | (2) |
|
3.2.2 Loading an existing data set |
|
|
26 | (1) |
|
3.2.3 Inputting data from a raw data (ASCII) file |
|
|
26 | (1) |
|
3.2.4 Inputting data from a special Microfit file saved previously |
|
|
27 | (1) |
|
3.2.5 Inputting data from an Excel file |
|
|
27 | (1) |
|
3.2.6 Inputting data from CSV files |
|
|
28 | (1) |
|
3.2.7 Inputting data from AREMOS (TSD) files |
|
|
28 | (1) |
|
3.2.8 Input new data from the clipboard into Microfit |
|
|
28 | (1) |
|
3.2.9 Adding data from the clipboard into Microfit workspace |
|
|
29 | (1) |
|
3.2.10 Inputting daily data |
|
|
30 | (1) |
|
3.3 Adding two data files |
|
|
30 | (4) |
|
3.3.1 Adding two special Microfit files containing the same variables |
|
|
31 | (2) |
|
3.3.2 Adding two special Microfit files containing different variables |
|
|
33 | (1) |
|
3.4 Using the Commands and Data Transformations box |
|
|
34 | (1) |
|
|
34 | (2) |
|
3.5.1 Save as a special Microfit file |
|
|
34 | (1) |
|
3.5.2 Save as an Excel sheet |
|
|
35 | (1) |
|
3.5.3 Save as a comma separated values (CSV) file |
|
|
35 | (1) |
|
3.5.4 Save as an AREMOS (TSD) file |
|
|
36 | (1) |
|
3.5.5 Save as a raw data (numbers only) file |
|
|
36 | (1) |
|
3.6 Starting with a new data set |
|
|
36 | (1) |
|
4 Data Processing and Preliminary Data Analysis |
|
|
37 | (31) |
|
4.1 Creating constant terms, time trends and seasonal dummies |
|
|
38 | (3) |
|
4.1.1 Creating a constant (intercept) term |
|
|
39 | (1) |
|
4.1.2 Creating a time trend |
|
|
39 | (1) |
|
4.1.3 Creating (0, 1) seasonal dummies |
|
|
39 | (1) |
|
4.1.4 Creating centred seasonal dummies |
|
|
40 | (1) |
|
4.1.5 Creating seasonal dummies relative to the last season |
|
|
40 | (1) |
|
4.2 Typing formulae in Microfit |
|
|
41 | (2) |
|
4.2.1 Printing, saving, viewing, and copying files |
|
|
43 | (1) |
|
4.3 Using built-in functions in Microfit |
|
|
43 | (9) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
4.4 Using commands in Microfit |
|
|
52 | (16) |
|
|
52 | (1) |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
4.4.12 Command FILL_FORWARD |
|
|
59 | (1) |
|
4.4.13 Command FILL_MISSING |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
5 Printing/Saving Results and Graphs |
|
|
68 | (5) |
|
|
68 | (1) |
|
5.1.1 On-line printing of results |
|
|
68 | (1) |
|
|
68 | (1) |
|
5.2 Print/save/retrieve graphs |
|
|
69 | (3) |
|
5.2.1 Altering the display of graphs |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (1) |
|
5.2.4 Retrieval of graphic files |
|
|
72 | (1) |
|
5.2.5 Capturing graphs onto the clipboard |
|
|
72 | (1) |
|
5.3 Exercises using graphs |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (84) |
|
6 Single-Equation Options |
|
|
75 | (42) |
|
6.1 The classical normal linear regression model |
|
|
75 | (4) |
|
6.1.1 Testing the assumptions of the classical model |
|
|
76 | (1) |
|
6.1.2 Estimation of the classical linear regression model |
|
|
77 | (2) |
|
6.1.3 Testing zero restrictions and reporting probability values |
|
|
79 | (1) |
|
6.2 The maximum likelihood approach |
|
|
79 | (4) |
|
6.2.1 Newton-Raphson algorithm |
|
|
80 | (1) |
|
6.2.2 Properties of maximum likelihood estimators |
|
|
80 | (1) |
|
6.2.3 Likelihood-based tests |
|
|
81 | (2) |
|
6.3 Estimation menus in Microfit |
|
|
83 | (1) |
|
6.4 Single Equation Estimation Menu |
|
|
84 | (1) |
|
6.5 The Linear Regression Menu |
|
|
85 | (3) |
|
6.5.1 Specification of a linear regression equation |
|
|
85 | (2) |
|
6.5.2 Specification of the estimation period |
|
|
87 | (1) |
|
6.6 Ordinary Least Squares option |
|
|
88 | (2) |
|
6.6.1 Tests of residual serial correlation |
|
|
88 | (1) |
|
6.6.2 Ramsey's RESET test for functional form misspecification |
|
|
89 | (1) |
|
|
89 | (1) |
|
6.6.4 Heteroscedasticity test |
|
|
89 | (1) |
|
6.6.5 Predictive failure test |
|
|
89 | (1) |
|
6.6.6 Chow's test of the stability of regression coefficients |
|
|
90 | (1) |
|
6.6.7 Measures of leverage |
|
|
90 | (1) |
|
6.7 Generalized instrumental variable method option |
|
|
90 | (2) |
|
6.8 AR errors (exact ML) option |
|
|
92 | (1) |
|
6.9 AR errors (Cochrane-Orcutt) option |
|
|
93 | (1) |
|
6.10 AR errors (Gauss-Newton) option |
|
|
94 | (1) |
|
6.11 IV with AR errors (Gauss-Newton) option |
|
|
94 | (2) |
|
6.12 MA errors (exact ML) option |
|
|
96 | (1) |
|
6.13 IV with MA errors option |
|
|
96 | (1) |
|
6.13.1 Specification of initial estimates for the parameters of the AR/MA error process |
|
|
97 | (1) |
|
6.14 Recursive regression options |
|
|
97 | (1) |
|
6.14.1 Recursive OLS Regression Results Menu |
|
|
98 | (1) |
|
6.15 Rolling Linear Regression Menu |
|
|
98 | (1) |
|
6.15.1 Rolling Regression Results Menu |
|
|
99 | (1) |
|
6.16 Non-Linear Regression Menu |
|
|
99 | (3) |
|
6.16.1 Specification of a non-linear regression equation |
|
|
101 | (1) |
|
6.16.2 Specification of initial parameter estimates |
|
|
102 | (1) |
|
6.16.3 Estimation results for the non-linear regression equation |
|
|
102 | (1) |
|
6.17 Phillips-Hansen Estimation Menu |
|
|
102 | (2) |
|
6.18 ARDL approach to cointegration |
|
|
104 | (2) |
|
6.18.1 Specification of an ARDL regression equation |
|
|
104 | (1) |
|
6.18.2 ARDL Order Selection Menu |
|
|
105 | (1) |
|
6.18.3 Post ARDL Model Selection Menu |
|
|
105 | (1) |
|
6.18.4 ARDL Forecast Menu |
|
|
106 | (1) |
|
6.19 Logit and Probit models |
|
|
106 | (3) |
|
6.19.1 Specification of the Logit/Probit model |
|
|
107 | (1) |
|
6.19.2 Logit/Probit Estimation Menu |
|
|
107 | (1) |
|
6.19.3 Estimation results for Logit and Probit options |
|
|
108 | (1) |
|
6.19.4 Logit/Probit Post Estimation Menu |
|
|
108 | (1) |
|
6.20 Post Regression Menu |
|
|
109 | (1) |
|
6.21 Display/Save Residuals and Fitted Values Menu |
|
|
110 | (1) |
|
6.22 Standard, White and Newey-West Adjusted Variance Menu |
|
|
111 | (1) |
|
6.23 Hypothesis Testing Menu |
|
|
112 | (5) |
|
7 Multiple Equation Options |
|
|
117 | (26) |
|
7.1 The canonical multivariate model |
|
|
117 | (2) |
|
7.1.1 The log-likelihood function of the multivariate model |
|
|
119 | (1) |
|
|
119 | (2) |
|
7.3 System Estimation Menu |
|
|
121 | (1) |
|
7.4 Unrestricted VAR option |
|
|
122 | (6) |
|
7.4.1 Unrestricted VAR Post Estimation Menu |
|
|
123 | (1) |
|
7.4.2 Unrestricted VAR Dynamic Response Analysis Menu |
|
|
124 | (1) |
|
7.4.3 VAR Hypothesis Testing Menu |
|
|
125 | (2) |
|
7.4.4 Multivariate Forecast Menu |
|
|
127 | (1) |
|
7.5 Cointegrating VAR options |
|
|
128 | (8) |
|
7.5.1 Specification of the cointegrating VAR model |
|
|
130 | (1) |
|
7.5.2 Cointegrating VAR Post Estimation Menu |
|
|
131 | (1) |
|
7.5.3 Long-Run Structural Modelling Menu |
|
|
132 | (1) |
|
7.5.4 Impulse Response Analysis and Forecasting Menu |
|
|
133 | (3) |
|
7.5.5 Beveridge-Nelson Trend/Cycle Decomposition |
|
|
136 | (1) |
|
7.5.6 Trend/Cycle Decomposition Results Menu |
|
|
136 | (1) |
|
7.6 Cointegrating VARX option |
|
|
136 | (2) |
|
|
138 | (5) |
|
7.7.1 Unrestricted SURE options |
|
|
139 | (1) |
|
7.7.2 Restricted SURE options |
|
|
140 | (1) |
|
7.7.3 SURE Post Estimation Menu |
|
|
141 | (2) |
|
8 Volatility Modelling Options |
|
|
143 | (14) |
|
|
143 | (1) |
|
8.2 Historical approaches to volatility measurement |
|
|
144 | (1) |
|
8.2.1 Risk Metrics TM (JP Morgan) method |
|
|
144 | (1) |
|
8.2.2 Econometric approaches |
|
|
145 | (1) |
|
8.3 Univariate GARCH models |
|
|
145 | (1) |
|
8.4 Multivariate GARCH models |
|
|
146 | (2) |
|
8.4.1 DCC and t-DCC Multivariate Volatility Models |
|
|
147 | (1) |
|
8.5 Volatility Modelling Menu |
|
|
148 | (1) |
|
8.6 Univariate GARCH Estimation Menu |
|
|
149 | (2) |
|
8.6.1 Specification of the GARCH, AGARCH and EGARCH models |
|
|
149 | (1) |
|
8.6.2 Specification of the initial parameter values for GARCH, AGARCH and EGARCH models |
|
|
150 | (1) |
|
8.6.3 Estimation results for the GARCH-M options |
|
|
150 | (1) |
|
8.7 Multivariate GARCH Menu |
|
|
151 | (2) |
|
8.7.1 Estimation results for the MGARCH |
|
|
152 | (1) |
|
8.8 Multivariate GARCH Post Estimation Menu |
|
|
153 | (4) |
|
8.8.1 Testing the Validity of Multivariate GARCH Menu |
|
|
154 | (1) |
|
8.8.2 Compute the VaR of a portfolio |
|
|
154 | (3) |
|
|
157 | (260) |
|
9 Lessons in Data Management |
|
|
159 | (7) |
|
9.1 Lesson 9.1: Reading in the raw data file UKSTOCK.DAT |
|
|
159 | (1) |
|
9.2 Lesson 9.2: Saving your current data set as a special Microfit file |
|
|
160 | (1) |
|
9.3 Lesson 9.3: Reading in the special Microfit file UKSTOCK.FIT |
|
|
160 | (1) |
|
9.4 Lesson 9.4: Combining two special Microfit files containing different variables |
|
|
161 | (1) |
|
9.5 Lesson 9.5: Combining two special Microfit files containing the same variables |
|
|
161 | (1) |
|
9.6 Lesson 9.6: Extending the sample period of a special Microfit file |
|
|
162 | (1) |
|
9.7 Lesson 9.7: Reading the CSV file UKCON.CSV into Microfit |
|
|
162 | (1) |
|
9.8 Lesson 9.8: Reading the Excel file DAILYFUTURES.XLS into Microfit |
|
|
163 | (1) |
|
9.9 Lesson 9.9: Saving the DAILYFUTURES.XLS file excluding missing values |
|
|
163 | (1) |
|
9.10 Exercises in data management |
|
|
164 | (2) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
165 | (1) |
|
10 Lessons in Data Processing |
|
|
166 | (31) |
|
10.1 Lessons 10.1: Interactive data transformations |
|
|
166 | (1) |
|
10.2 Lessons 10.2: Doing data transformations using the BATCH command |
|
|
167 | (1) |
|
10.3 Lessons 10.3: Adding titles (descriptions) to variables |
|
|
168 | (1) |
|
10.4 Lessons 10.4: Creating dummy variables |
|
|
169 | (2) |
|
10.5 Lessons 10.5: Plotting variables against time and/or against each other |
|
|
171 | (2) |
|
10.6 Lessons 10.6: The use of command XPLOT in generating probability density function |
|
|
173 | (1) |
|
10.7 Lessons 10.7: Histogram of US stock market returns |
|
|
174 | (1) |
|
10.8 Lessons 10.8: Hodrick-Prescott filter applied to UK GDP |
|
|
175 | (2) |
|
10.9 Lessons 10.9: Summary statistics and correlation coefficients of US and UK output growths |
|
|
177 | (1) |
|
10.10 Lessons 10.10: Autocorrelation coefficients of US output growth |
|
|
178 | (1) |
|
10.11 Lessons 10.11: Spectral density function of the US output growth |
|
|
179 | (2) |
|
10.12 Lessons 10.12: Constructing a geometrically declining distributed lag variable: using the SIM command |
|
|
181 | (1) |
|
10.13 Lesson 10.13: Computation of OLS estimators using formulae and commands |
|
|
182 | (3) |
|
10.14 Lessons 10.14: Construction of indices of effective exchange rates and foreign prices |
|
|
185 | (3) |
|
10.15 Lessons 10.15: Non-parametric density estimation of futures returns |
|
|
188 | (3) |
|
10.16 Lessons 10.16: Principal components analysis of US macro-economic time series |
|
|
191 | (3) |
|
10.17 Lesson 10.17: Canonical correlation analysis of bond and equity futures |
|
|
194 | (2) |
|
10.18 Exercises in data processing |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
11 Lessons in Linear Regression Analysis |
|
|
197 | (35) |
|
11.1 Lesson 11.1: OLS estimation of simple regression models |
|
|
197 | (5) |
|
11.2 Lesson 11.2: Two alternative methods of testing linear restrictions |
|
|
202 | (4) |
|
11.3 Lesson 11.3: Estimation of long-run effects and mean lags |
|
|
206 | (2) |
|
11.4 Lesson 11.4: The multicollinearity problem |
|
|
208 | (4) |
|
11.5 Lesson 11.5: Testing common factor restrictions |
|
|
212 | (1) |
|
11.6 Lesson 11.6: Estimation of regression models with serially correlated errors |
|
|
213 | (4) |
|
11.7 Lesson 11.7: Estimation of a `surprise' consumption function: an example of two-step estimation |
|
|
217 | (2) |
|
11.8 Lesson 11.8: An example of non-nested hypothesis testing |
|
|
219 | (1) |
|
11.9 Lesson 11.9: Testing linear versus log-linear models |
|
|
220 | (2) |
|
11.10 Lesson 11.10: Testing for exogeneity: computation of the Wu-Hausman statistic |
|
|
222 | (2) |
|
11.11 Lesson 11.11: Recursive prediction of US monthly excess returns |
|
|
224 | (4) |
|
11.12 Lesson 11.12: Rolling regressions and the Lucas critique |
|
|
228 | (2) |
|
11.13 Exercises in linear regression analysis |
|
|
230 | (2) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
12 Lessons in Univariate Time-Series Analysis |
|
|
232 | (23) |
|
12.1 Lesson 12.1: Using the ADF command to test for unit roots |
|
|
233 | (4) |
|
12.2 Lesson 12.2: Spectral analysis of US output growth |
|
|
237 | (6) |
|
12.3 Lesson 12.3: Using an ARMA model for forecasting US output growth |
|
|
243 | (3) |
|
12.4 Lesson 12.4: Alternative measures of persistence of shocks to US real GNP |
|
|
246 | (3) |
|
12.5 Lesson 12.5: Non-stationarity and structural breaks in real GDP |
|
|
249 | (2) |
|
12.6 Lesson 12.6: Unit roots in US nominal wages and the stock market crash |
|
|
251 | (3) |
|
12.7 Exercises in univariate time-series analysis |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (1) |
|
13 Lessons in Non-Linear Estimation |
|
|
255 | (15) |
|
13.1 Lesson 13.1: Non-linear estimation of Cobb-Douglas production function |
|
|
255 | (2) |
|
13.2 Lesson 13.2: Estimation of Euler equations by the NLS-IV method |
|
|
257 | (4) |
|
13.3 Lesson 13.3: Estimation of Almon distributed lag models |
|
|
261 | (2) |
|
13.4 Lesson 13.4: Estimation of a non-linear Phillips curve |
|
|
263 | (4) |
|
13.5 Lesson 13.5: Estimating a non-linear Phillips curve with serially correlated errors |
|
|
267 | (2) |
|
13.6 Exercises in non-linear estimation |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
269 | (1) |
|
14 Lessons in Probit and Logit Estimation |
|
|
270 | (7) |
|
14.1 Lesson 14.1: Modeling the choice of fertilizer use by Philippine farmers |
|
|
270 | (4) |
|
14.1.1 Forecasting with Probit/Logit models |
|
|
273 | (1) |
|
14.2 Lesson 14.2: Fertilizer use model estimated over a sub-sample of farmers |
|
|
274 | (2) |
|
14.3 Exercises in Logit/Probit estimation |
|
|
276 | (1) |
|
|
276 | (1) |
|
|
276 | (1) |
|
15 Lessons in VAR Modelling |
|
|
277 | (13) |
|
15.1 Lesson 15.1: Selecting the order of the VAR |
|
|
277 | (4) |
|
15.2 Lesson 15.2: Testing for the presence of oil shock dummies in output equations |
|
|
281 | (1) |
|
15.3 Lesson 15.3: International transmission of output shocks |
|
|
282 | (1) |
|
15.4 Lesson 15.4: Contemporaneous correlation of output shocks |
|
|
283 | (2) |
|
15.5 Lesson 15.5: Forecasting output growths using the VAR |
|
|
285 | (1) |
|
15.6 Lesson 15.6: Impulse responses of the effects of output growth shocks |
|
|
286 | (2) |
|
15.7 Exercises in VAR modelling |
|
|
288 | (2) |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
16 Lessons in Cointegration Analysis |
|
|
290 | (49) |
|
16.1 Lesson 16.1: Testing for cointegration when the cointegrating coefficients are known |
|
|
291 | (3) |
|
16.2 Lesson 16.2: A residual-based approach to testing for cointegration |
|
|
294 | (2) |
|
16.3 Lesson 16.3: Testing for cointegration: Johansen ML approach |
|
|
296 | (6) |
|
16.4 Lesson 16.4: Testing for cointegration in models with I(1) exogenous variables |
|
|
302 | (6) |
|
16.5 Lesson 16.5: Long-run analysis of consumption, income and inflation: the ARDL approach |
|
|
308 | (4) |
|
16.6 Lesson 16.6: Great ratios and long-run money demand in the US |
|
|
312 | (14) |
|
16.7 Lesson 16.7: Application of the cointegrating VAR analysis to the UK term structure of interest rates |
|
|
326 | (8) |
|
16.8 Lesson 16.8: Canonical correlations and cointegration analysis |
|
|
334 | (3) |
|
16.9 Exercises in cointegration analysis |
|
|
337 | (2) |
|
|
337 | (1) |
|
|
337 | (1) |
|
|
337 | (1) |
|
|
337 | (1) |
|
|
337 | (2) |
|
17 Lessons in VARX Modelling and Trend/Cycle Dec. |
|
|
339 | (35) |
|
17.1 Lesson 17.1: Testing the long-run validity of PPP and IRP hypotheses using UK data |
|
|
339 | (8) |
|
17.2 Lesson 17.2: A macroeconomic model for Indonesia |
|
|
347 | (4) |
|
17.3 Lesson 17.3: Testing for over-identifying restrictions in the Indonesian model |
|
|
351 | (5) |
|
17.4 Lesson 17.4: Forecasting UK inflation |
|
|
356 | (4) |
|
17.5 Lesson 17.5: Permanent and transitory components of output and consumption in a small model of the US economy |
|
|
360 | (6) |
|
17.6 Lesson 17.6: The trend-cycle decomposition of interest rates |
|
|
366 | (4) |
|
17.7 Lesson 17.7: The US equity market and the UK economy |
|
|
370 | (3) |
|
17.8 Exercises in VARX modelling |
|
|
373 | (1) |
|
|
373 | (1) |
|
|
373 | (1) |
|
|
373 | (1) |
|
|
373 | (1) |
|
18 Lessons in SURE Estimation |
|
|
374 | (13) |
|
18.1 Lesson 18.1: A restricted bivariate VAR model of patents and output growth in the US |
|
|
374 | (2) |
|
18.2 Lesson 18.2: Estimation of Grunfeld-Griliches investment equations |
|
|
376 | (2) |
|
18.3 Lesson 18.3: Testing cross-equation restrictions after SURE estimation |
|
|
378 | (1) |
|
18.4 Lesson 18.4: Estimation of a static almost ideal demand system |
|
|
379 | (3) |
|
18.5 Lesson 18.5: Estimation of a New Keynesian three equation model |
|
|
382 | (2) |
|
18.6 Lesson 18.6: 2SLS and 3SLS estimation of an exactly identified system |
|
|
384 | (2) |
|
18.7 Exercises in SURE Estimation |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
19 Lessons in Univariate GARCH Modelling |
|
|
387 | (16) |
|
19.1 Lesson 19.1: Testing for ARCH effects in montly $/£ exchange rates |
|
|
387 | (2) |
|
19.2 Lesson 19.2: Estimating GARCH models for monthly $/£ exchange rate |
|
|
389 | (4) |
|
19.3 Lesson 19.3: Estimating EGARCH models for monthly $/£ exchange rate |
|
|
393 | (2) |
|
19.4 Lesson 19.4: Forecasting volatility |
|
|
395 | (1) |
|
19.5 Lesson 19.5: Modelling volatility in daily exchange rates |
|
|
396 | (2) |
|
19.6 Lesson 19.6: Estimation of GARCH-in-mean models of US excess returns |
|
|
398 | (3) |
|
19.7 Exercises in GARCH modelling |
|
|
401 | (2) |
|
|
401 | (1) |
|
|
402 | (1) |
|
20 Lessons in Multivariate GARCH Modelling |
|
|
403 | (14) |
|
20.1 Lesson 20.1: Estimating DCC models for a portfolio of currency futures |
|
|
403 | (4) |
|
20.2 Lesson 20.2: Plotting the estimated conditional volatilities and correlations |
|
|
407 | (2) |
|
20.3 Lesson 20.3: Testing for linear restrictions |
|
|
409 | (1) |
|
20.4 Lesson 20.4: Testing the validity of the t-DCC model |
|
|
410 | (3) |
|
20.5 Lesson 20.5: Forecasting conditional correlations |
|
|
413 | (1) |
|
20.6 Lesson 20.6: MGARCH applied to a set of OLS residuals |
|
|
414 | (2) |
|
20.7 Exercises in Multivariate GARCH Estimation |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
417 | (124) |
|
21 Econometrics of Single Equation Models |
|
|
419 | (60) |
|
21.1 Summary statistics and autocorrelation coefficients |
|
|
419 | (2) |
|
21.1.1 Box-Pierce and Ljung-Box tests |
|
|
420 | (1) |
|
21.2 Non-parametric estimation of the density function |
|
|
421 | (1) |
|
21.3 Estimation of spectral density |
|
|
422 | (1) |
|
21.4 Hodrick-Prescott (HP) filter |
|
|
423 | (1) |
|
21.5 Pesaran-Timmermann non-parametric test of predictive performance |
|
|
424 | (1) |
|
21.6 Ordinary least squares estimates |
|
|
424 | (6) |
|
21.6.1 Regression results |
|
|
425 | (2) |
|
21.6.2 Diagnostic test statistics (the OLS case) |
|
|
427 | (3) |
|
21.7 Statistical model selection criteria |
|
|
430 | (2) |
|
21.7.1 Akaike information criterion (AIC) |
|
|
430 | (1) |
|
21.7.2 Schwarz Bayesian criterion (SBC) |
|
|
431 | (1) |
|
21.7.3 Hannan and Quinn criterion (HQC) |
|
|
431 | (1) |
|
21.7.4 Consistency properties of the different model-selectio criteria |
|
|
431 | (1) |
|
21.8 Non-nested tests for linear regression models |
|
|
432 | (3) |
|
21.9 Non-nested tests for models with different transforamtions of the dependent variable |
|
|
435 | (4) |
|
21.9.1 The PE test statistic |
|
|
435 | (1) |
|
21.9.2 The Bera-McAleer test statistic |
|
|
436 | (1) |
|
21.9.3 The double-length regression test statistic |
|
|
436 | (1) |
|
21.9.4 The Cox non-nested statistics computed by simulation |
|
|
437 | (2) |
|
21.9.5 Sargan and Vuong's likelihood criteria |
|
|
439 | (1) |
|
21.10 The generalized instrumental variable method |
|
|
439 | (3) |
|
21.10.1 Two-stage least squares |
|
|
440 | (1) |
|
21.10.2 Generalized R2 for IV regressions |
|
|
441 | (1) |
|
21.10.3 Sargan's general mis-specification test |
|
|
441 | (1) |
|
21.10.4 Sargan's test of residual serial correlation for IV regressions |
|
|
442 | (1) |
|
21.11 Exact ML/AR estimators |
|
|
442 | (5) |
|
|
444 | (1) |
|
|
444 | (1) |
|
21.11.3 Covariance matrix of the exact ML estimators for the AR(1) and AR(2) options |
|
|
445 | (1) |
|
21.11.4 Adjusted residuals, R2, R2, and other statistics |
|
|
445 | (2) |
|
21.11.5 Log-likelihood ratio statistics for tests of residual serial correlation |
|
|
447 | (1) |
|
21.12 The Cochrane-Orcutt iterative method |
|
|
447 | (2) |
|
21.12.1 Covariance matrix of the CO estimators |
|
|
449 | (1) |
|
21.13 ML/AR estimators by the Gauss-Newton method |
|
|
449 | (1) |
|
21.13.1 AR(m) error process with zero restrictions |
|
|
450 | (1) |
|
21.14 The IV/AR estimation method |
|
|
450 | (3) |
|
21.14.1 Sargan's general mis-specification test in the case of the IV/AR option |
|
|
451 | (1) |
|
21.14.2 R2, R2, GR2, GR2, and other statistics: AR options |
|
|
452 | (1) |
|
21.15 Exact ML/MA estimators |
|
|
453 | (3) |
|
21.15.1 Covariance matrix of the unknown parameters in the MA option |
|
|
455 | (1) |
|
21.16 The IV/MA estimators |
|
|
456 | (1) |
|
21.16.1 R2, R2, GR2, GR2, and other statistics: MA options |
|
|
456 | (1) |
|
21.17 Recursive regressions |
|
|
457 | (4) |
|
|
458 | (1) |
|
21.17.2 The CUSUM of squares test |
|
|
458 | (1) |
|
21.17.3 Recursive coefficients: the OLS option |
|
|
458 | (1) |
|
21.17.4 Standardized recursive residuals: the OLS option |
|
|
459 | (1) |
|
21.17.5 Recursive standard errors: the OLS option |
|
|
459 | (1) |
|
21.17.6 Recursive estimation: the IV option |
|
|
459 | (1) |
|
21.17.7 Adaptive coefficients in expectations formation models under incomplete learning |
|
|
460 | (1) |
|
21.17.8 Recursive predictions |
|
|
460 | (1) |
|
21.18 Phillips-Hansen fully modified OLS estimators |
|
|
461 | (2) |
|
21.18.1 Choice of lag windows w(s, m) |
|
|
462 | (1) |
|
21.18.2 Estimation of the variance matrix of the FM-OLS estimator |
|
|
462 | (1) |
|
21.19 Autoregressive distributed lag models |
|
|
463 | (2) |
|
21.20 Probit and Logit models |
|
|
465 | (4) |
|
21.20.1 Estimating and testing vector functions of β |
|
|
467 | (1) |
|
21.20.2 Fitted probability and fitted discrete values |
|
|
467 | (1) |
|
21.20.3 Measures of goodness of fit and related test statistics |
|
|
468 | (1) |
|
21.20.4 Forecasting with Probit/Logit models |
|
|
468 | (1) |
|
21.21 Non-linear estimation |
|
|
469 | (2) |
|
21.21.1 The non-linear least squares (NLS) method |
|
|
470 | (1) |
|
21.21.2 The non-linear instrumental variables (NL/IV) method |
|
|
470 | (1) |
|
21.22 Heteroscedasticity-consistent variance estimators |
|
|
471 | (1) |
|
21.23 Newey-West variance estimators |
|
|
472 | (1) |
|
21.24 Variance of vector function of estimators |
|
|
473 | (1) |
|
21.25 Wald statistic for testing linear and non-linear restrictions |
|
|
474 | (1) |
|
21.26 Univariate forecasts in regression models |
|
|
474 | (5) |
|
21.26.1 Univariate static forecasts |
|
|
475 | (1) |
|
21.26.2 Univariate dynamic forecasts |
|
|
476 | (1) |
|
21.26.3 Standard errors of univariate forecast errors: the OLS and IV options |
|
|
476 | (1) |
|
21.26.4 Forecasts based on non-linear models |
|
|
477 | (1) |
|
21.26.5 Measures of forecast accuracy |
|
|
477 | (2) |
|
22 Econometrics of Multiple Equation Models |
|
|
479 | (46) |
|
22.1 Seemingly unrelated regression equations (SURE) |
|
|
480 | (2) |
|
22.1.1 Maximum likelihood estimation |
|
|
480 | (2) |
|
22.2 Three-stage least squares |
|
|
482 | (3) |
|
22.2.1 Testing linear/non-linear restrictions |
|
|
484 | (1) |
|
22.2.2 LR statistic for testing whether Σ is diagonal |
|
|
484 | (1) |
|
22.3 System estimation subject to linear restrictions |
|
|
485 | (2) |
|
22.4 Augmented vector autoregressive models |
|
|
487 | (3) |
|
22.4.1 VAR order selection |
|
|
488 | (1) |
|
22.4.2 Testing the deletion of deterministic/exogenous variables |
|
|
489 | (1) |
|
22.4.3 Testing for block Granger non-causality |
|
|
489 | (1) |
|
22.5 Impulse response analysis |
|
|
490 | (4) |
|
22.5.1 Orthogonalized impulse responses |
|
|
491 | (1) |
|
22.5.2 Generalized impulse responses |
|
|
492 | (2) |
|
22.6 Forecast error variance decompositions |
|
|
494 | (2) |
|
22.6.1 Orthogonalized forecast error variance decomposition |
|
|
494 | (1) |
|
22.6.2 Generalized forecast error variance decomposition |
|
|
494 | (2) |
|
|
496 | (3) |
|
22.7.1 Cointegrating relatious |
|
|
497 | (2) |
|
22.8 ML estimation and tests of cointegration |
|
|
499 | (5) |
|
22.8.1 Maximum eigenvalue statistic |
|
|
502 | (1) |
|
|
502 | (1) |
|
22.8.3 Model selection criteria for choosing the number of cointegrating relations |
|
|
503 | (1) |
|
22.9 Long-run structural modelling |
|
|
504 | (7) |
|
22.9.1 Identification of the cointegrating relations |
|
|
504 | (1) |
|
22.9.2 Estimation of the cointegrating relations under general linear restrictions |
|
|
505 | (3) |
|
22.9.3 Log-likelihood ratio statistics for tests of over-identifying restrictions on the cointegrating relations |
|
|
508 | (1) |
|
22.9.4 Impulse response analysis in cointegrating VAR models |
|
|
509 | (1) |
|
22.9.5 Impulse response functions of cointegrating relations |
|
|
510 | (1) |
|
22.9.6 Persistence profiles for cointegrating relations and speed of convergence to equilibrium |
|
|
511 | (1) |
|
|
511 | (7) |
|
22.10.1 The structural VARX model |
|
|
512 | (1) |
|
22.10.2 The reduced form VARX model |
|
|
513 | (1) |
|
22.10.3 The cointegrated VAR model with I(1) exogenous variables |
|
|
513 | (4) |
|
22.10.4 Forecasting and impulse response analysis in VARX models |
|
|
517 | (1) |
|
22.11 Trend/cycle decomposition in VARs |
|
|
518 | (3) |
|
22.12 Principal components |
|
|
521 | (2) |
|
22.12.1 Selecting the number of PCs or factors |
|
|
522 | (1) |
|
22.13 Canonical correlations |
|
|
523 | (2) |
|
23 Econometrics of Volatility Models |
|
|
525 | (16) |
|
23.1 Univariate conditionally heteroscedastic models |
|
|
525 | (7) |
|
23.1.1 GARCH-in-mean models |
|
|
525 | (2) |
|
23.1.2 ML estimation with Gaussian errors |
|
|
527 | (1) |
|
23.1.3 ML estimation with Student's t-distributed errors |
|
|
527 | (1) |
|
23.1.4 Exponential GARCH-in-Mean models |
|
|
528 | (1) |
|
23.1.5 Absolute GARCH-in-Mean models |
|
|
528 | (1) |
|
23.1.6 Computational considerations |
|
|
529 | (1) |
|
23.1.7 Testing for ARCH (or GARCH) effects |
|
|
529 | (1) |
|
23.1.8 Residuals, DW, R2 and other statistics |
|
|
529 | (1) |
|
23.1.9 Forecasting with conditionally heteroscedastic models |
|
|
530 | (2) |
|
23.2 Multivariate conditionally heteroscedastic models |
|
|
532 | (9) |
|
23.2.1 Initialization, estimation and evaluation samples |
|
|
534 | (1) |
|
23.2.2 Maximum likelihood estimation |
|
|
534 | (3) |
|
23.2.3 Simple diagnostic tests of the DCC model |
|
|
537 | (2) |
|
23.2.4 Forecasting volatilities and conditional correlations |
|
|
539 | (2) |
|
Appendix A Size Limitations |
|
|
541 | (2) |
|
Appendix B Statistical Tables |
|
|
543 | (4) |
|
B.1 Upper and lower bound F-test and W-test critical values of Pesaran, Shin and Smith single-equation cointegration test |
|
|
543 | (4) |
References |
|
547 | |