Atjaunināt sīkdatņu piekrišanu

E-grāmata: Timing Neutron Stars: Pulsations, Oscillations and Explosions

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Astrophysics and Space Science Library 461
  • Izdošanas datums: 23-Oct-2020
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662621103
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Astrophysics and Space Science Library 461
  • Izdošanas datums: 23-Oct-2020
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662621103
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Neutron stars, whether isolated or in a binary system, display a varied and complex phenomenology, often accompanied by extreme variability of many time scales, which takes the form of pulsations due to the object rotation, quasi-periodicities associated to accretion of matter, and explosions due to matter accreted on the surface or to starquakes of highly magnetized objects.

This book gives an overview of the current observational and theoretical standpoint in the research on the physics under the extreme conditions that neutron stars naturally provide. The six chapters explore three physical regions of a neutron star:





















the space around it, where accretion and pulsar companions allow testing of general relativity its surface, where millisecond pulsation and X-ray burts provide clues about general relativistic effects and the equation of state of neutron matter its interior, of course, inaccessible to direct observations, can nevertheless, be probed with all observational parameters related to neutron star variability.
1 Astrophysical Constraints on Dense Matter in Neutron Stars
1(52)
M. Coleman Miller
1.1 Introduction
2(1)
1.2 Expectations from Nuclear Theory
3(7)
1.2.1 The Basics: Dense Matter and Neutron Stars
3(3)
1.2.2 Models of Matter at High Densities
6(3)
1.2.3 Construction of Neutron Star Models from Microphysics
9(1)
1.3 Constraints on Mass from Binary Observations
10(5)
1.3.1 Newtonian Observations of Binaries
10(1)
1.3.2 Post-Keplerian Measurements of Pulsar Binaries
11(2)
1.3.3 Dynamically Estimated Neutron Star Masses and Future Prospects
13(2)
1.4 Constraints on Radius, and Other Mass Constraints
15(13)
1.4.1 Thermonuclear X-ray Bursts
15(3)
1.4.2 Fits of Thermal Spectra to Cooling Neutron Stars
18(4)
1.4.3 Modeling of Waveforms
22(2)
1.4.4 Maximum Spin Rate
24(1)
1.4.5 Kilohertz QPOs
25(2)
1.4.6 Other Methods to Determine the Radius and Future Prospects
27(1)
1.5 Cooling of Neutron Stars
28(6)
1.5.1 The URCA Processes
29(1)
1.5.2 Additional Neutrino Production Channels and Suppression
30(1)
1.5.3 Photon Luminosity and the Minimal Cooling Model
31(1)
1.5.4 Observations and Systematic Errors
32(1)
1.5.5 Current Status and Future Prospects
33(1)
1.6 Gravitational Waves from Coalescing Binaries
34(3)
1.7 Summary
37(2)
References
39(14)
2 General Relativity Measurements from Pulsars
53(44)
Marta Burgay
Delphine Perrodin
Andrea Possenti
2.1 Why Radio Pulsars
54(1)
2.2 The Many Faces of the Radio Pulsar Zoo
55(7)
2.2.1 Radio Pulsars
55(4)
2.2.2 Intermittent Pulsars
59(2)
2.2.3 Rotating RAdio Transients
61(1)
2.3 Relativistic Binary Pulsars
62(10)
2.3.1 Basic Evolution
62(4)
2.3.2 The Current Sample
66(6)
2.4 Pulsar Timing Basics
72(6)
2.4.1 Timing Procedure: Measurement of the ToAs
72(2)
2.4.2 Timing Procedure: Modelling the ToAs
74(4)
2.5 Probing Relativistic Gravity with Pulsars
78(12)
2.5.1 Tests Using PPN Parameters
80(2)
2.5.2 Tests Using PK Parameters
82(6)
2.5.3 Future Prospects
88(2)
References
90(7)
3 Magnetars: A Short Review and Some Sparse Considerations
97(46)
Paolo Esposito
Nanda Rea
Gian Luca Israel
3.1 Historical Overview
98(1)
3.2 Observational Characteristics
99(27)
3.2.1 Persistent Emission
99(4)
3.2.2 Transient Activity
103(13)
3.2.3 Magnetar Formation
116(1)
3.2.4 Magnetic Field Evolution and the Neutron Star Bestiary
117(3)
3.2.5 Low-B Magnetars and High-B Pulsars
120(4)
3.2.6 Magnetars in Binary Systems
124(2)
3.3 Final Remarks
126(1)
References
127(16)
4 Accreting Millisecond X-ray Pulsars
143(66)
Alessandro Patruno
Anna L. Watts
4.1 Introduction
144(2)
4.2 The Accreting Millisecond X-ray Pulsar Family
146(5)
4.2.1 Intermittency
149(2)
4.3 Observations of the AMXPs
151(17)
4.3.1 SAX J1808.4-3658
151(5)
4.3.2 XTE J1751-305
156(2)
4.3.3 XTE J0929-314
158(1)
4.3.4 XTE J1807-294
158(1)
4.3.5 XTE J1814-338
159(1)
4.3.6 IGR J00291+5934
160(1)
4.3.7 HETE J1900.1-2455
161(1)
4.3.8 Swift J1756.9-2508
162(1)
4.3.9 Aql X-1
163(1)
4.3.10 SAX J1748.9-2021
164(1)
4.3.11 NGC 6440X-2
165(1)
4.3.12 IGR J17511-3057
165(1)
4.3.13 Swift J1749.4-2807
166(1)
4.3.14 IGR J17498-2921
167(1)
4.3.15 IGR J18245-2452
167(1)
4.4 Accretion Torques
168(12)
4.4.1 Coherent Timing Technique
172(3)
4.4.2 Observations: Accretion Torques in AMXPs
175(5)
4.5 Pulse Profiles
180(3)
4.5.1 Pulse Fractional Amplitudes and Phase Lags
180(2)
4.5.2 Pulse Shape Evolution
182(1)
4.6 Long Term Evolution and Pulse Formation Process
183(6)
4.6.1 Specific Sources
183(3)
4.6.2 The Maximum Spin Frequency of Neutron Stars
186(1)
4.6.3 Why Do Most Low Mass X-ray Binaries Not Pulsate?
187(2)
4.7 Thermonuclear Bursts
189(5)
4.8 Aperiodic Variability and kHz QPOs
194(2)
4.9 Open Problems and Final Remarks
196(1)
References
197(12)
5 Thermonuclear X-ray Bursts
209(54)
Duncan K. Galloway
Laurens Keek
5.1 Overview
210(11)
5.1.1 Theory of Burst Ignition and Nuclear Burning Regimes
211(6)
5.1.2 Status of Burst Observations
217(4)
5.2 X-ray Burst Ignition
221(4)
5.2.1 Thin-Shell Instability and Electron Degeneracy
222(1)
5.2.2 Reignition After a Short Recurrence Time
222(2)
5.2.3 Ignition Latitude
224(1)
5.3 The Burst Spectral Energy Distribution
225(5)
5.3.1 The Continuum Spectrum
225(3)
5.3.2 Discrete Spectral Features
228(2)
5.4 Interaction with the Accretion Environment
230(5)
5.4.1 Reflection by the Accretion Disk
233(1)
5.4.2 Anisotropic Emission
234(1)
5.5 Burst Oscillations and the Neutron Star Spin
235(1)
5.6 mHz Oscillations and Marginally Stable Burning
236(3)
5.6.1 Observations of mHz QPOs
237(1)
5.6.2 Theoretical Interpretation: Marginally Stable Burning
238(1)
5.7 Burst Duration and Fuel Composition
239(5)
5.7.1 Intermediate Duration Bursts
240(2)
5.7.2 Superbursts
242(2)
5.8 Thermonuclear Burst Simulations
244(5)
5.8.1 Single-Zone Models
245(1)
5.8.2 One-Dimensional Multi-Zone Models
245(3)
5.8.3 Multi-Dimensional Models
248(1)
5.9 Nuclear Experimental Physics
249(2)
5.10 Summary and Outlook
251(1)
References
252(11)
6 High-Frequency Variability in Neutron-Star Low-Mass X-ray Binaries
263(70)
Mariano Mendez
Tomaso M. Belloni
6.1 Introduction
264(1)
6.2 History
264(2)
6.3 Basic Frequencies Close to a Neutron Star
266(1)
6.4 Timing Phenomenology: QPOs 101
267(15)
6.5 Linking Observed Frequencies with Theoretical Expectations
282(4)
6.6 QPO Frequency Correlations
286(1)
6.7 Relation Between Properties of the kHz QPOs and Parameters of the Energy Spectrum
287(4)
6.8 Beyond QPO Frequencies
291(28)
6.8.1 The Fractional rms Amplitude of the kHz QPOs
291(7)
6.8.2 The Width of the kHz QPOs
298(7)
6.8.3 The Energy-Dependent Lags and Coherenceof the kHz QPOs
305(10)
6.8.4 Other Phenomenology of the kHz QPOs
315(4)
6.9 Probing Neutron-Star Interiors and GR with kHz QPO
319(1)
6.10 Conclusions and Outlook
320(1)
References
321(12)
Index 333
Tomaso M. Belloni studied physics at the University of Milan and graduated in 1986 with a thesis on a black-hole binary. He worked at the Max-Planck Institut für extraterrestrische Physik (Germany) and at the University of Amsterdam (the Netherlands). Since 1999 he is at INAF - Osservatorio Astronomico di Brera in Merate, Italy, currently as a Senior Scientist. He was Leverhulme Visiting Professor at the University of Southampton, UK in the years 2012-2013 and is Visiting Professor there since then. He is currently chairman of subcommission E1 of COSPAR and editor for New Astronomy. His interests are in accreting X-ray binaries and time series analysis.









Mariano Méndez completed his Ph.D. in astrophysics at the University of La Plata, Argentina, in 1989. He held postdoctoral fellowships at the University of La Plata and the University of Amsterdam, and was a visiting researcher at the Max-Planck-Institute for Astronomy (MPA) in Munich. He was assistant and associate professor at the University of La Plata, honorary associate professor at the Universities of Amsterdam and Utrecht, senior scientist at the Netherlands Institute for Space Research (SRON), and is currently full professor at the University of Groningen in The Netherlands and visiting professor at the University of Southampton in the UK. From 2001 to 2007 he was PI of the Low-Energy Transmission Grating (LETG) spectrometer on board the Chandra X-ray observatory, and since 2015 is science co-I of the X-ray Integral Field Unit (X-IFU) that will be part of the Athena X-ray Observatory. He was associate editor of Space Research Today, and is currently member of the board of directors of the European journal Astronomy & Astrophysics and chair of COSPARs Panel on Capacity Building. He organised about 30 capacity-building workshops on space science in countries in Africa, Asia, East Europe and Latin-America, and in 2018 he received the COSPAR Distinguished Service Medal for his contributionto the advancement of space sciences in developing countries.

Chengmin Zhang received his Ph.D. in Astrophysics at The University of Hong Kong (China), on the topics of magnetic field  and spin period evolutions of accreting neutron stars in binary systems and formations of millisecond pulsars. He had the positions for  the research fellowships at IFT/UNESP (Brazil) on  gravitational field  and relativistic astrophysics and at Theoretical  Astrophysics Institue of Sydney University (Australia) on pulsar astrophysics and radio scintillation. He is now a reaserch professor at CAS Key Lab of FAST, National Astronomical Observatories, Chinese Academy of Sciences, and a teaching professor  at The University of Chinese Academy of Sciences.