|
1 Astrophysical Constraints on Dense Matter in Neutron Stars |
|
|
1 | (52) |
|
|
|
2 | (1) |
|
1.2 Expectations from Nuclear Theory |
|
|
3 | (7) |
|
1.2.1 The Basics: Dense Matter and Neutron Stars |
|
|
3 | (3) |
|
1.2.2 Models of Matter at High Densities |
|
|
6 | (3) |
|
1.2.3 Construction of Neutron Star Models from Microphysics |
|
|
9 | (1) |
|
1.3 Constraints on Mass from Binary Observations |
|
|
10 | (5) |
|
1.3.1 Newtonian Observations of Binaries |
|
|
10 | (1) |
|
1.3.2 Post-Keplerian Measurements of Pulsar Binaries |
|
|
11 | (2) |
|
1.3.3 Dynamically Estimated Neutron Star Masses and Future Prospects |
|
|
13 | (2) |
|
1.4 Constraints on Radius, and Other Mass Constraints |
|
|
15 | (13) |
|
1.4.1 Thermonuclear X-ray Bursts |
|
|
15 | (3) |
|
1.4.2 Fits of Thermal Spectra to Cooling Neutron Stars |
|
|
18 | (4) |
|
1.4.3 Modeling of Waveforms |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (2) |
|
1.4.6 Other Methods to Determine the Radius and Future Prospects |
|
|
27 | (1) |
|
1.5 Cooling of Neutron Stars |
|
|
28 | (6) |
|
|
29 | (1) |
|
1.5.2 Additional Neutrino Production Channels and Suppression |
|
|
30 | (1) |
|
1.5.3 Photon Luminosity and the Minimal Cooling Model |
|
|
31 | (1) |
|
1.5.4 Observations and Systematic Errors |
|
|
32 | (1) |
|
1.5.5 Current Status and Future Prospects |
|
|
33 | (1) |
|
1.6 Gravitational Waves from Coalescing Binaries |
|
|
34 | (3) |
|
|
37 | (2) |
|
|
39 | (14) |
|
2 General Relativity Measurements from Pulsars |
|
|
53 | (44) |
|
|
|
|
|
54 | (1) |
|
2.2 The Many Faces of the Radio Pulsar Zoo |
|
|
55 | (7) |
|
|
55 | (4) |
|
2.2.2 Intermittent Pulsars |
|
|
59 | (2) |
|
2.2.3 Rotating RAdio Transients |
|
|
61 | (1) |
|
2.3 Relativistic Binary Pulsars |
|
|
62 | (10) |
|
|
62 | (4) |
|
|
66 | (6) |
|
|
72 | (6) |
|
2.4.1 Timing Procedure: Measurement of the ToAs |
|
|
72 | (2) |
|
2.4.2 Timing Procedure: Modelling the ToAs |
|
|
74 | (4) |
|
2.5 Probing Relativistic Gravity with Pulsars |
|
|
78 | (12) |
|
2.5.1 Tests Using PPN Parameters |
|
|
80 | (2) |
|
2.5.2 Tests Using PK Parameters |
|
|
82 | (6) |
|
|
88 | (2) |
|
|
90 | (7) |
|
3 Magnetars: A Short Review and Some Sparse Considerations |
|
|
97 | (46) |
|
|
|
|
|
98 | (1) |
|
3.2 Observational Characteristics |
|
|
99 | (27) |
|
3.2.1 Persistent Emission |
|
|
99 | (4) |
|
|
103 | (13) |
|
|
116 | (1) |
|
3.2.4 Magnetic Field Evolution and the Neutron Star Bestiary |
|
|
117 | (3) |
|
3.2.5 Low-B Magnetars and High-B Pulsars |
|
|
120 | (4) |
|
3.2.6 Magnetars in Binary Systems |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (16) |
|
4 Accreting Millisecond X-ray Pulsars |
|
|
143 | (66) |
|
|
|
|
144 | (2) |
|
4.2 The Accreting Millisecond X-ray Pulsar Family |
|
|
146 | (5) |
|
|
149 | (2) |
|
4.3 Observations of the AMXPs |
|
|
151 | (17) |
|
|
151 | (5) |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
4.3.13 Swift J1749.4-2807 |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (1) |
|
|
168 | (12) |
|
4.4.1 Coherent Timing Technique |
|
|
172 | (3) |
|
4.4.2 Observations: Accretion Torques in AMXPs |
|
|
175 | (5) |
|
|
180 | (3) |
|
4.5.1 Pulse Fractional Amplitudes and Phase Lags |
|
|
180 | (2) |
|
4.5.2 Pulse Shape Evolution |
|
|
182 | (1) |
|
4.6 Long Term Evolution and Pulse Formation Process |
|
|
183 | (6) |
|
|
183 | (3) |
|
4.6.2 The Maximum Spin Frequency of Neutron Stars |
|
|
186 | (1) |
|
4.6.3 Why Do Most Low Mass X-ray Binaries Not Pulsate? |
|
|
187 | (2) |
|
|
189 | (5) |
|
4.8 Aperiodic Variability and kHz QPOs |
|
|
194 | (2) |
|
4.9 Open Problems and Final Remarks |
|
|
196 | (1) |
|
|
197 | (12) |
|
5 Thermonuclear X-ray Bursts |
|
|
209 | (54) |
|
|
|
|
210 | (11) |
|
5.1.1 Theory of Burst Ignition and Nuclear Burning Regimes |
|
|
211 | (6) |
|
5.1.2 Status of Burst Observations |
|
|
217 | (4) |
|
|
221 | (4) |
|
5.2.1 Thin-Shell Instability and Electron Degeneracy |
|
|
222 | (1) |
|
5.2.2 Reignition After a Short Recurrence Time |
|
|
222 | (2) |
|
|
224 | (1) |
|
5.3 The Burst Spectral Energy Distribution |
|
|
225 | (5) |
|
5.3.1 The Continuum Spectrum |
|
|
225 | (3) |
|
5.3.2 Discrete Spectral Features |
|
|
228 | (2) |
|
5.4 Interaction with the Accretion Environment |
|
|
230 | (5) |
|
5.4.1 Reflection by the Accretion Disk |
|
|
233 | (1) |
|
5.4.2 Anisotropic Emission |
|
|
234 | (1) |
|
5.5 Burst Oscillations and the Neutron Star Spin |
|
|
235 | (1) |
|
5.6 mHz Oscillations and Marginally Stable Burning |
|
|
236 | (3) |
|
5.6.1 Observations of mHz QPOs |
|
|
237 | (1) |
|
5.6.2 Theoretical Interpretation: Marginally Stable Burning |
|
|
238 | (1) |
|
5.7 Burst Duration and Fuel Composition |
|
|
239 | (5) |
|
5.7.1 Intermediate Duration Bursts |
|
|
240 | (2) |
|
|
242 | (2) |
|
5.8 Thermonuclear Burst Simulations |
|
|
244 | (5) |
|
|
245 | (1) |
|
5.8.2 One-Dimensional Multi-Zone Models |
|
|
245 | (3) |
|
5.8.3 Multi-Dimensional Models |
|
|
248 | (1) |
|
5.9 Nuclear Experimental Physics |
|
|
249 | (2) |
|
|
251 | (1) |
|
|
252 | (11) |
|
6 High-Frequency Variability in Neutron-Star Low-Mass X-ray Binaries |
|
|
263 | (70) |
|
|
|
|
264 | (1) |
|
|
264 | (2) |
|
6.3 Basic Frequencies Close to a Neutron Star |
|
|
266 | (1) |
|
6.4 Timing Phenomenology: QPOs 101 |
|
|
267 | (15) |
|
6.5 Linking Observed Frequencies with Theoretical Expectations |
|
|
282 | (4) |
|
6.6 QPO Frequency Correlations |
|
|
286 | (1) |
|
6.7 Relation Between Properties of the kHz QPOs and Parameters of the Energy Spectrum |
|
|
287 | (4) |
|
6.8 Beyond QPO Frequencies |
|
|
291 | (28) |
|
6.8.1 The Fractional rms Amplitude of the kHz QPOs |
|
|
291 | (7) |
|
6.8.2 The Width of the kHz QPOs |
|
|
298 | (7) |
|
6.8.3 The Energy-Dependent Lags and Coherenceof the kHz QPOs |
|
|
305 | (10) |
|
6.8.4 Other Phenomenology of the kHz QPOs |
|
|
315 | (4) |
|
6.9 Probing Neutron-Star Interiors and GR with kHz QPO |
|
|
319 | (1) |
|
6.10 Conclusions and Outlook |
|
|
320 | (1) |
|
|
321 | (12) |
Index |
|
333 | |