Introduction |
|
1 Cauchy's Equations |
|
1 | (18) |
|
1.1 Additive Cauchy Equation |
|
|
1 | (9) |
|
1.2 Logarithmic Cauchy Equation |
|
|
10 | (2) |
|
1.3 Exponential Cauchy Equation |
|
|
12 | (1) |
|
1.4 Multiplicative Cauchy Equation |
|
|
13 | (2) |
|
|
15 | (4) |
2 Generalized Cauchy Equations |
|
19 | (14) |
|
|
19 | (2) |
|
2.2 Linear Cauchy Equation |
|
|
21 | (1) |
|
|
22 | (3) |
|
|
25 | (2) |
|
2.5 Functions Preserving Mean Values |
|
|
27 | (3) |
|
|
30 | (3) |
3 Reducing to Cauchy |
|
33 | (10) |
|
|
33 | (6) |
|
|
39 | (4) |
4 Substitutions |
|
43 | (12) |
|
|
43 | (8) |
|
|
51 | (4) |
5 Symmetrization and Additional Variables |
|
55 | (10) |
|
|
55 | (8) |
|
|
63 | (2) |
6 Iterations and Recurrence Relations |
|
65 | (14) |
|
|
65 | (10) |
|
|
75 | (4) |
7 Constructive Problems |
|
79 | (26) |
|
|
79 | (12) |
|
7.2 Constructing Functions by Iterations |
|
|
91 | (10) |
|
|
101 | (4) |
8 D'Alembert Equation |
|
105 | (18) |
|
|
105 | (3) |
|
8.2 Polynomial Recurrences and Continuity |
|
|
108 | (13) |
|
|
121 | (2) |
9 The Aczel-Golab-Schinzel Equation |
|
123 | (8) |
|
|
123 | (5) |
|
|
128 | (3) |
10 Arithmetic Functional Equations |
|
131 | (16) |
|
|
131 | (13) |
|
|
144 | (3) |
11 Binary and Other Bases |
|
147 | (8) |
|
|
147 | (5) |
|
|
152 | (3) |
12 Geometric Functional Equations |
|
155 | (12) |
|
12.1 Fundamental Theorem of Affine Geometry |
|
|
155 | (5) |
|
|
160 | (3) |
|
|
163 | (4) |
13 Approximating by Linear Functions |
|
167 | (8) |
|
|
167 | (6) |
|
|
173 | (2) |
14 Extremal Element Method |
|
175 | (14) |
|
|
175 | (11) |
|
|
186 | (3) |
15 Fixed Points |
|
189 | (6) |
|
|
189 | (4) |
|
|
193 | (2) |
16 Functional Equations for Polynomials |
|
195 | (22) |
|
|
195 | (13) |
|
16.2 Fermat's Theorem for Polynomials |
|
|
208 | (5) |
|
|
213 | (4) |
17 Functional Inequalities |
|
217 | (10) |
|
|
217 | (7) |
|
|
224 | (3) |
18 Miscellaneous Problems |
|
227 | (16) |
|
|
227 | (4) |
|
18.2 Basic Properties of Functions |
|
|
231 | (3) |
|
18.3 Continuous Functions |
|
|
234 | (2) |
|
18.4 The Odd and Even Parts of Functions |
|
|
236 | (1) |
|
18.5 Constructive Problems |
|
|
236 | (1) |
|
18.6 Functional Equations Using Special Groups |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
18.9 Discrete Subharmonic Functions |
|
|
240 | (3) |
19 Hints and Solutions |
|
243 | (258) |
|
|
243 | (9) |
|
19.2 Generalized Cauchy Equations |
|
|
252 | (7) |
|
|
259 | (19) |
|
|
278 | (15) |
|
19.5 Symmetrization and Additional Variables |
|
|
293 | (8) |
|
19.6 Iterations and Recursive Relations |
|
|
301 | (11) |
|
19.7 Constructive Problems |
|
|
312 | (17) |
|
19.8 D'Alembert's Equation |
|
|
329 | (12) |
|
19.9 The Aczel-Golab-Schinzel Equation |
|
|
341 | (3) |
|
19.10 Arithmetic Functional Equations |
|
|
344 | (15) |
|
19.11 Binary and Other Bases |
|
|
359 | (7) |
|
19.12 Geometric Functional Equations |
|
|
366 | (9) |
|
19.13 Approximating by Linear Functions |
|
|
375 | (6) |
|
19.14 Extremal Element Method |
|
|
381 | (8) |
|
|
389 | (2) |
|
19.16 Functional Equations for Polynomials |
|
|
391 | (14) |
|
19.17 Functional Inequalities |
|
|
405 | (10) |
|
19.18 Miscellaneous Problems |
|
|
415 | (86) |
|
19.18.1 Inductive Arguments |
|
|
415 | (19) |
|
19.18.2 Basic Properties of Functions |
|
|
434 | (22) |
|
19.18.3 Continuous Functions |
|
|
456 | (15) |
|
19.18.4 The Odd and Even Parts of Functions |
|
|
471 | (3) |
|
19.18.5 Constructive Problems |
|
|
474 | (6) |
|
19.18.6 Functional Equations Using Special Groups |
|
|
480 | (2) |
|
|
482 | (5) |
|
|
487 | (9) |
|
19.18.9 Discrete Subharmonic Functions |
|
|
496 | (5) |
20 Notation and Abbreviations |
|
501 | (2) |
|
|
501 | (1) |
|
|
502 | (1) |
Bibliography |
|
503 | |