Atjaunināt sīkdatņu piekrišanu

E-grāmata: Topics in Galois Theory

  • Formāts: 120 pages
  • Sērija : Research Notes in Mathematics
  • Izdošanas datums: 19-Apr-2016
  • Izdevniecība: A K Peters
  • Valoda: eng
  • ISBN-13: 9781439865255
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 120 pages
  • Sērija : Research Notes in Mathematics
  • Izdošanas datums: 19-Apr-2016
  • Izdevniecība: A K Peters
  • Valoda: eng
  • ISBN-13: 9781439865255
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt construction for p-groups, p != 2, as well as Hilbert's irreducibility theorem and the large sieve inequality, are presented. The second half is devoted to rationality and rigidity criteria and their application in realizing certain groups as Galois groups of regular extensions of Q(T). While proofs are not carried out in full detail, the book contains a number of examples, exercises, and open problems.

Recenzijas

" is a very stimulating text, which . . . will attract mathematicians working in group theory, number theory, algebraic geometry, and complex analysis. Zentralblatt für Mathematik

This small book contains a nice introduction to some classical highlights and some recent work on the inverse Galois theory problem. The topics and main theorems are carefully chosen and composed in a masterly manner. Mathematiacl Reviews -July 2007 ""Serre had the great good sense to have notes taken at his 1988 lectures at Harvard, creating a slim volume of great interest..."" -BOOK NEWS Inc., June 2008 J.-P. Serre, one of the greatest mathematicians in our time, provides here a unique introduction to both some classical milestones and some recent developments in the realm of inverse Galois theory. ... [ This book] will maintain its unique, unparalleled role in the literature on inverse Galois theory for further generations. Now as before, J.-P. Serre's masterpiece of expository writing is an unvaluable source of inspiration and incitement likewise. -Werner Kleinert, Zentralblatt MATH, January 2007 ""Serres book helped to call the attention to a deep classical problem with connections to algebraic geometry, topology, algebra, and number theory. By carefully selecting examples, methods and topics, this book goes deeply into the problem."" -MAA Reviews, September 2008"




Jean-Pierre Serre is one of the leading mathematicians of the twentieth century, active in algebraic geometry, number theory, and topology. He has received numerous awards and honors for his mathematical research and exposition, including the Fields Medal in 1954 and the Abel Prize in 2003.