Preface |
|
vii | |
Introduction |
|
ix | |
|
|
xxi | |
|
|
xxxiii | |
|
1 Spacetime Singularities in General Relativity |
|
|
1 | (18) |
|
Cesar A. Zen Vasconcellos |
|
|
|
1 | (5) |
|
1.2 Einstein Equations of General Relativity |
|
|
6 | (3) |
|
1.3 Singularities at the Beginning of the Universe |
|
|
9 | (1) |
|
1.4 Standard Cosmological Model |
|
|
9 | (2) |
|
|
11 | (8) |
|
|
17 | (2) |
|
2 Astrophysical Constraints on Strong Modified Gravity |
|
|
19 | (48) |
|
|
|
2.1 General Relativity in the Strong Field Domain: Problems and Challenges |
|
|
20 | (2) |
|
2.2 Modified Gravity: Different Approaches |
|
|
22 | (5) |
|
2.3 Neutron Stars in Modified Gravity |
|
|
27 | (6) |
|
|
27 | (2) |
|
2.3.2 Neutron star models in f (R)-gravity |
|
|
29 | (3) |
|
2.3.3 Neutron stars in scalar-tensor-vector gravity |
|
|
32 | (1) |
|
2.4 Black Holes in Modified Gravity |
|
|
33 | (7) |
|
2.4.1 Black holes in /(i?)-gravity |
|
|
34 | (4) |
|
2.4.2 Black holes in scalar-tensor-vector gravity |
|
|
38 | (2) |
|
|
40 | (7) |
|
|
47 | (4) |
|
|
51 | (6) |
|
2.8 Singularities and Beyond |
|
|
57 | (10) |
|
|
60 | (1) |
|
|
61 | (6) |
|
3 The Pseudo-Complex General Relativity: Theory and Observational Predictions |
|
|
67 | (18) |
|
|
|
|
67 | (2) |
|
3.2 The Pseudo-Complex General Relativity |
|
|
69 | (4) |
|
3.3 Observational Consequences |
|
|
73 | (6) |
|
3.3.1 Simulations of accretion disks |
|
|
75 | (4) |
|
|
79 | (2) |
|
|
81 | (4) |
|
|
82 | (1) |
|
|
82 | (3) |
|
4 Dense Baryonic Matter in the Cores of Neutron Stars |
|
|
85 | (68) |
|
|
|
|
85 | (6) |
|
4.2 Neutron Star Equation of State and Structure |
|
|
91 | (15) |
|
4.2.1 The neutron star crust |
|
|
92 | (1) |
|
4.2.2 Hadronic matter and relativistic nuclear mean-field theory |
|
|
93 | (12) |
|
4.2.3 Neutron star structure |
|
|
105 | (1) |
|
4.3 Constraining the Equation of State |
|
|
106 | (19) |
|
4.3.1 Constraining the equation of state of symmetric nuclear matter |
|
|
106 | (8) |
|
4.3.2 Constraining the equation of state with neutron star properties |
|
|
114 | (7) |
|
4.3.3 Summary: Constraining the equation of state |
|
|
121 | (4) |
|
4.4 Hyperons in Neutron Star Matter |
|
|
125 | (22) |
|
4.4.1 Meson-hyperon coupling constants |
|
|
126 | (4) |
|
4.4.2 The hyperonic equation of state |
|
|
130 | (7) |
|
4.4.3 The vector meson-hyperon coupling space |
|
|
137 | (7) |
|
4.4.4 Varying the hypernuclear potentials |
|
|
144 | (3) |
|
4.5 Summary and Conclusions |
|
|
147 | (6) |
|
|
149 | (1) |
|
|
149 | (4) |
|
5 Probing the Spacetime Around a Black Hole with X-Ray Variability |
|
|
153 | (24) |
|
|
5.1 Introduction: The Promise of X-Ray Binaries |
|
|
153 | (2) |
|
|
155 | (2) |
|
|
155 | (1) |
|
|
156 | (1) |
|
5.3 Fast Time Variability |
|
|
157 | (3) |
|
|
160 | (4) |
|
|
160 | (3) |
|
|
163 | (1) |
|
|
164 | (7) |
|
5.5.1 The relativistic precession model |
|
|
165 | (4) |
|
5.5.2 The epicyclic resonance models |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (3) |
|
|
174 | (3) |
|
|
175 | (2) |
|
6 Supermassive Black Holes in the Early Universe |
|
|
177 | (30) |
|
Jose Antonio de Freitas Pacheco |
|
|
|
177 | (2) |
|
6.2 Spherical Accretion and the Eddington Limit |
|
|
179 | (5) |
|
6.3 Intermittent Growth of Black Holes |
|
|
184 | (7) |
|
6.3.1 Cosmological simulations |
|
|
185 | (3) |
|
6.3.2 Properties of simulated SMBHs |
|
|
188 | (3) |
|
6.4 The Early Formation of SMBHs |
|
|
191 | (11) |
|
6.4.1 Further tests of the model |
|
|
196 | (6) |
|
|
202 | (5) |
|
|
204 | (3) |
|
7 Astrophysical Aspects of General Relativistic Mass Twin Stars |
|
|
207 | (50) |
|
|
David Edwin Alvarez-Castillo |
|
|
|
|
|
|
|
208 | (2) |
|
7.2 Self-Consistent Set of Field Equations for Stationary Rotating and Tidally Deformed Stars |
|
|
210 | (9) |
|
7.2.1 Einstein equations for axial symmetry |
|
|
211 | (1) |
|
7.2.2 Full solution for uniform rotational bodies |
|
|
212 | (3) |
|
7.2.3 Perturbation approach to the solution |
|
|
215 | (2) |
|
7.2.4 Static spherically symmetric star models |
|
|
217 | (2) |
|
7.3 Tidal Deformability of Compact Stars |
|
|
219 | (8) |
|
|
221 | (4) |
|
7.3.2 Rotational deformation and moment of inertia |
|
|
225 | (2) |
|
7.4 Models for the EoS with a Strong Phase Transition |
|
|
227 | (11) |
|
7.4.1 Multi-polytrope approach to the EoS |
|
|
232 | (3) |
|
7.4.2 EoS including mixed phase effects (pasta phases) |
|
|
235 | (3) |
|
|
238 | (9) |
|
7.5.1 TOV solutions for mixed phase models |
|
|
238 | (1) |
|
7.5.2 Tidal deformability predictions |
|
|
239 | (1) |
|
7.5.3 Rotating compact star solutions |
|
|
240 | (7) |
|
7.6 Implications for the Phenomenology of Compact Stars |
|
|
247 | (2) |
|
7.7 Summary and Conclusions |
|
|
249 | (8) |
|
|
251 | (1) |
|
|
252 | (5) |
Index |
|
257 | |