Atjaunināt sīkdatņu piekrišanu

Topics On Strong Gravity: A Modern View On Theories And Experiments [Hardback]

Edited by (Universidade Federal Do Rio Grande Do Sul (Ufrgs), Brazil & International Center For Relativistic Astrophysics Network (Icranet), Italy)
  • Formāts: Hardback, 300 pages
  • Izdošanas datums: 10-Jan-2020
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813277335
  • ISBN-13: 9789813277335
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 145,75 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 300 pages
  • Izdošanas datums: 10-Jan-2020
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813277335
  • ISBN-13: 9789813277335
Citas grāmatas par šo tēmu:
'The book concentrates attention on extended alternative theories of gravity and on the best astrophysical laboratories to probe the strong gravity-field regime: black holes, pulsars and neutron stars Readers will likely share the satisfaction the editor and contributors say they experienced as they organized the book.'SirReadaLotFor more than a century, our understanding of gravitational physics was based on Albert Einstein's theory of General Relativity, which fundamentally changed our understanding of the Universe, its origin, and its evolutionary process. General Relativity accurately describes a large number of phenomena on very different scales. As such, it has been very well tested and its remarkable predictions are compatible with most experimental and observational data. However, the observational and experimental results compatible with General Relativity fall in its vast majority under the weak gravitational field regime. In recent years, discrepancies between the data and the corresponding predictions of General Relativity have been observed and have generated intense research activity. One of the most critical aspects of General Relativity is the presence of singularities in extreme physical situations. These discrepancies indicate that either the parameters of the theory must be modified in the regime of strong field gravity/high energy and large space-time curvature, or the theory itself should be modified. In this book, we focus our attention on extended alternative gravity theories and the best astrophysical laboratories to probe the strong field regime: black holes, pulsars, and neutron stars.
Preface vii
Introduction ix
List of Figures
xxi
List of Tables
xxxiii
1 Spacetime Singularities in General Relativity
1(18)
Cesar A. Zen Vasconcellos
1.1 General Relativity
1(5)
1.2 Einstein Equations of General Relativity
6(3)
1.3 Singularities at the Beginning of the Universe
9(1)
1.4 Standard Cosmological Model
9(2)
1.5 Friedmann Equations
11(8)
References
17(2)
2 Astrophysical Constraints on Strong Modified Gravity
19(48)
Daniela Perez
Gustavo E. Romero
2.1 General Relativity in the Strong Field Domain: Problems and Challenges
20(2)
2.2 Modified Gravity: Different Approaches
22(5)
2.3 Neutron Stars in Modified Gravity
27(6)
2.3.1 Introduction
27(2)
2.3.2 Neutron star models in f (R)-gravity
29(3)
2.3.3 Neutron stars in scalar-tensor-vector gravity
32(1)
2.4 Black Holes in Modified Gravity
33(7)
2.4.1 Black holes in /(i?)-gravity
34(4)
2.4.2 Black holes in scalar-tensor-vector gravity
38(2)
2.5 Accretion Disks
40(7)
2.6 Effects on Jets
47(4)
2.7 Gravitational Waves
51(6)
2.8 Singularities and Beyond
57(10)
Acknowledgments
60(1)
References
61(6)
3 The Pseudo-Complex General Relativity: Theory and Observational Predictions
67(18)
Peter O. Hess
Thomas Boiler
3.1 Introduction
67(2)
3.2 The Pseudo-Complex General Relativity
69(4)
3.3 Observational Consequences
73(6)
3.3.1 Simulations of accretion disks
75(4)
3.4 Gravitational Waves
79(2)
3.5 Conclusions
81(4)
Acknowledgment
82(1)
References
82(3)
4 Dense Baryonic Matter in the Cores of Neutron Stars
85(68)
William M. Spinella
Fridolin Weber
4.1 Introduction
85(6)
4.2 Neutron Star Equation of State and Structure
91(15)
4.2.1 The neutron star crust
92(1)
4.2.2 Hadronic matter and relativistic nuclear mean-field theory
93(12)
4.2.3 Neutron star structure
105(1)
4.3 Constraining the Equation of State
106(19)
4.3.1 Constraining the equation of state of symmetric nuclear matter
106(8)
4.3.2 Constraining the equation of state with neutron star properties
114(7)
4.3.3 Summary: Constraining the equation of state
121(4)
4.4 Hyperons in Neutron Star Matter
125(22)
4.4.1 Meson-hyperon coupling constants
126(4)
4.4.2 The hyperonic equation of state
130(7)
4.4.3 The vector meson-hyperon coupling space
137(7)
4.4.4 Varying the hypernuclear potentials
144(3)
4.5 Summary and Conclusions
147(6)
Acknowledgments
149(1)
References
149(4)
5 Probing the Spacetime Around a Black Hole with X-Ray Variability
153(24)
Tomaso M. Belloni
5.1 Introduction: The Promise of X-Ray Binaries
153(2)
5.2 Spectral Approaches
155(2)
5.2.1 Continuum spectra
155(1)
5.2.2 Iron line emission
156(1)
5.3 Fast Time Variability
157(3)
5.4 Observations
160(4)
5.4.1 Low frequencies
160(3)
5.4.2 High frequencies
163(1)
5.5 Models
164(7)
5.5.1 The relativistic precession model
165(4)
5.5.2 The epicyclic resonance models
169(1)
5.5.3 Other models
170(1)
5.6 Where We Stand
171(3)
5.7 Conclusions
174(3)
References
175(2)
6 Supermassive Black Holes in the Early Universe
177(30)
Jose Antonio de Freitas Pacheco
6.1 Introduction
177(2)
6.2 Spherical Accretion and the Eddington Limit
179(5)
6.3 Intermittent Growth of Black Holes
184(7)
6.3.1 Cosmological simulations
185(3)
6.3.2 Properties of simulated SMBHs
188(3)
6.4 The Early Formation of SMBHs
191(11)
6.4.1 Further tests of the model
196(6)
6.5 Conclusions
202(5)
References
204(3)
7 Astrophysical Aspects of General Relativistic Mass Twin Stars
207(50)
David Blaschke
David Edwin Alvarez-Castillo
Alexander Ayriyan
Hovik Grigorian
Noshad Khosravi Largani
Fridolin Weber
7.1 Introduction
208(2)
7.2 Self-Consistent Set of Field Equations for Stationary Rotating and Tidally Deformed Stars
210(9)
7.2.1 Einstein equations for axial symmetry
211(1)
7.2.2 Full solution for uniform rotational bodies
212(3)
7.2.3 Perturbation approach to the solution
215(2)
7.2.4 Static spherically symmetric star models
217(2)
7.3 Tidal Deformability of Compact Stars
219(8)
7.3.1 Moment of inertia
221(4)
7.3.2 Rotational deformation and moment of inertia
225(2)
7.4 Models for the EoS with a Strong Phase Transition
227(11)
7.4.1 Multi-polytrope approach to the EoS
232(3)
7.4.2 EoS including mixed phase effects (pasta phases)
235(3)
7.5 Results
238(9)
7.5.1 TOV solutions for mixed phase models
238(1)
7.5.2 Tidal deformability predictions
239(1)
7.5.3 Rotating compact star solutions
240(7)
7.6 Implications for the Phenomenology of Compact Stars
247(2)
7.7 Summary and Conclusions
249(8)
Acknowledgments
251(1)
References
252(5)
Index 257