List of Participants |
|
xxvii | |
Part I: Basic Lectures |
|
|
1 An introduction to topological phases of electrons |
|
|
3 | (60) |
|
|
|
5 | (1) |
|
|
5 | (13) |
|
1.2.1 Mathematical preliminaries |
|
|
5 | (9) |
|
1.2.2 Berry phases in quantum mechanics |
|
|
14 | (4) |
|
1.3 Topological phases: Thouless phases arising from Berry phases |
|
|
18 | (17) |
|
|
18 | (3) |
|
1.3.2 1D polarization and 2D IQHE |
|
|
21 | (2) |
|
1.3.3 Interactions and disorder: the flux trick |
|
|
23 | (1) |
|
1.3.4 TKNN integers, Chern numbers, and homotopy |
|
|
24 | (2) |
|
1.3.5 Time-reversal invariance in Fermi systems |
|
|
26 | (3) |
|
1.3.6 Experimental status of 2D insulating systems |
|
|
29 | (1) |
|
1.3.7 3D band structure invariants and topological insulators |
|
|
29 | (2) |
|
1.3.8 Axion electrodynamics, second Chern number, and magnetoelectric polarizability |
|
|
31 | (4) |
|
1.3.9 Anomalous Hall effect and Karplus-Luttinger anomalous velocity |
|
|
35 | (1) |
|
1.4 Introduction to topological order |
|
|
35 | (20) |
|
|
35 | (1) |
|
1.4.2 Topological terms in field theories: the Haldane gap and Wess-Zumino-Witten models |
|
|
36 | (9) |
|
1.4.3 Topologically ordered phases: the FQHE |
|
|
45 | (10) |
|
1.A Topological invariants in 2D with time-reversal invariance |
|
|
55 | (4) |
|
1.A.1 An interlude: Wess-Zumino terms in 1D nonlinear sigma-models |
|
|
55 | (1) |
|
1.A.2 Topological invariants in time-reversal-invariant Fermi systems |
|
|
56 | (2) |
|
1.A.3 Pumping interpretation of Z2 invariant |
|
|
58 | (1) |
|
|
59 | (4) |
|
2 Topological superconductors and category theory |
|
|
63 | (60) |
|
|
|
|
65 | (1) |
|
2.1 Introduction to topological phases in condensed matter |
|
|
65 | (17) |
|
2.1.1 The notion of topology |
|
|
65 | (2) |
|
2.1.2 Classification of non-interacting fermion Hamiltonians: the 10-fold way |
|
|
67 | (8) |
|
2.1.3 The Su-Schrieffer-Heeger model |
|
|
75 | (2) |
|
2.1.4 The 1D p-wave superconductor |
|
|
77 | (3) |
|
2.1.5 Reduction of the 10-fold way classification by interactions: Z Z8 in class BDI |
|
|
80 | (2) |
|
2.2 Examples of topological order |
|
|
82 | (20) |
|
|
83 | (7) |
|
2.2.2 The 2D p-wave superconductor |
|
|
90 | (12) |
|
|
102 | (18) |
|
|
102 | (8) |
|
|
110 | (4) |
|
|
114 | (4) |
|
2.3.4 Examples: the 16-fold way revisited |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (2) |
|
3 Spin liquids and frustrated magnetism |
|
|
123 | (42) |
|
|
|
125 | (7) |
|
|
125 | (3) |
|
3.1.2 Classical ground-state degeneracy |
|
|
128 | (1) |
|
|
129 | (3) |
|
3.2 Classical spin liquids |
|
|
132 | (5) |
|
3.2.1 Simple approximations |
|
|
132 | (2) |
|
3.2.2 The triangular lattice Ising antiferromagnet and height models |
|
|
134 | (3) |
|
3.3 Classical dimer models |
|
|
137 | (6) |
|
|
138 | (1) |
|
3.3.2 General formulation |
|
|
138 | (3) |
|
3.3.3 Flux sectors, and U(1) and Z2 theories |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (7) |
|
|
143 | (1) |
|
3.4.2 Coulomb phase correlations |
|
|
144 | (3) |
|
|
147 | (1) |
|
3.4.4 Dipolar interactions |
|
|
148 | (2) |
|
|
150 | (10) |
|
|
150 | (1) |
|
3.5.2 Lieb-Schultz-Mattis theorem |
|
|
150 | (2) |
|
3.5.3 Quantum dimer models |
|
|
152 | (8) |
|
|
160 | (2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (3) |
|
4 Entanglement spectroscopy and its application to the quantum Hall effects |
|
|
165 | (54) |
|
|
|
167 | (1) |
|
|
167 | (2) |
|
4.2 Entanglement spectrum and entanglement entropy |
|
|
169 | (10) |
|
|
170 | (1) |
|
4.2.2 A simple example: two spin-1/2 |
|
|
171 | (1) |
|
4.2.3 Entanglement entropy |
|
|
172 | (3) |
|
4.2.4 The AKLT spin chain |
|
|
175 | (2) |
|
4.2.5 Matrix product states and the entanglement spectrum |
|
|
177 | (2) |
|
4.3 Observing an edge mode through the entanglement spectrum |
|
|
179 | (10) |
|
4.3.1 The integer quantum Hall effect |
|
|
179 | (5) |
|
|
184 | (1) |
|
4.3.3 Entanglement spectrum for a CI |
|
|
185 | (4) |
|
4.4 Fractional quantum Hall effect and entanglement spectra |
|
|
189 | (16) |
|
4.4.1 Fractional quantum Hall effect: overview and notation |
|
|
190 | (3) |
|
4.4.2 Orbital entanglement spectrum |
|
|
193 | (4) |
|
4.4.3 OES beyond model wavefunctions |
|
|
197 | (4) |
|
4.4.4 Particle entanglement spectrum |
|
|
201 | (3) |
|
4.4.5 Real-space entanglement spectrum |
|
|
204 | (1) |
|
4.5 Entanglement spectrum as a tool: probing the fractional Chern insulators |
|
|
205 | (4) |
|
4.5.1 From Chern insulators to fractional Chern insulators |
|
|
205 | (3) |
|
4.5.2 Entanglement spectrum for fractional Chern insulators |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (9) |
Part II: Topical lectures |
|
|
5 Duality in generalized Ising models |
|
|
219 | (22) |
|
|
|
221 | (1) |
|
|
221 | (1) |
|
5.2 Kramers-Wannier duality |
|
|
221 | (3) |
|
5.2.1 High-temperature expansion (HTE) |
|
|
222 | (1) |
|
5.2.2 Low-temperature expansion (LTE) |
|
|
223 | (1) |
|
|
223 | (1) |
|
5.3 Duality in three dimensions |
|
|
224 | (1) |
|
5.4 General Ising models and duality |
|
|
225 | (4) |
|
5.4.1 General Ising models |
|
|
225 | (1) |
|
|
226 | (3) |
|
5.5 Lattices and Ising models |
|
|
229 | (3) |
|
5.5.1 Lattices and their dual lattices |
|
|
229 | (1) |
|
5.5.2 Models on the lattice |
|
|
230 | (1) |
|
5.5.3 Euler characteristic and degeneracy |
|
|
230 | (2) |
|
5.6 The models Mdm on hypercubic lattices |
|
|
232 | (2) |
|
5.6.1 Gauge invariance and degeneracy |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (3) |
|
|
234 | (1) |
|
|
235 | (2) |
|
5.8 Lattice gauge theories |
|
|
237 | (1) |
|
5.9 Electromagnetic field |
|
|
237 | (1) |
|
|
238 | (3) |
|
6 Topological insulators and related phases with strong interactions |
|
|
241 | (24) |
|
|
|
243 | (1) |
|
6.2 Quantum phases of matter. Short-range versus long-range entanglement |
|
|
244 | (3) |
|
6.3 Examples of SRE topological phases |
|
|
247 | (2) |
|
6.3.1 Haldane phase of S = 1 antiferromagnet in d = 1 |
|
|
247 | (1) |
|
6.3.2 An exactly soluble topological phase in d = 1 |
|
|
247 | (2) |
|
6.4 SRE phase of bosons in two dimensions |
|
|
249 | (6) |
|
6.4.1 Coupled-wire construction |
|
|
250 | (2) |
|
6.4.2 Effective field theory |
|
|
252 | (2) |
|
6.4.3 Implications for IQH state of electrons |
|
|
254 | (1) |
|
6.5 SPT phases of bosons in three dimensions |
|
|
255 | (5) |
|
6.5.1 The m = 0 critical point |
|
|
257 | (1) |
|
6.5.2 Surface topological order of 3D bosonic SRE phases |
|
|
257 | (3) |
|
6.6 Surface topological order of fermionic topological insulators and superconductors |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
262 | (3) |
|
7 Fractional Abelian topological phases of matter for fermions in two-dimensional space |
|
|
265 | (96) |
|
|
|
268 | (9) |
|
7.2 The tenfold way in quasi-one-dimensional space |
|
|
277 | (12) |
|
7.2.1 Symmetries for the case of one one-dimensional channel |
|
|
277 | (6) |
|
7.2.2 Symmetries for the case of two one-dimensional channels |
|
|
283 | (3) |
|
7.2.3 Definition of the minimum rank |
|
|
286 | (3) |
|
7.2.4 Topological spaces for the normalized Dirac masses |
|
|
289 | (1) |
|
7.3 Fractionalization from Abelian bosonization |
|
|
289 | (18) |
|
|
289 | (1) |
|
|
290 | (1) |
|
7.3.3 Chiral equations of motion |
|
|
291 | (1) |
|
|
292 | (3) |
|
7.3.5 Conserved topological charges |
|
|
295 | (2) |
|
7.3.6 Quasiparticle and particle excitations |
|
|
297 | (3) |
|
|
300 | (3) |
|
7.3.8 From the Hamiltonian to the Lagrangian formalism |
|
|
303 | (2) |
|
7.3.9 Applications to polyacetylene |
|
|
305 | (2) |
|
7.4 Stability analysis for the edge theory in symmetry class AII |
|
|
307 | (15) |
|
|
307 | (5) |
|
|
312 | (2) |
|
7.4.3 Time-reversal symmetry of the edge theory |
|
|
314 | (2) |
|
7.4.4 Pinning the edge fields with disorder potentials: the Haldane criterion |
|
|
316 | (1) |
|
7.4.5 Stability criterion for edge modes |
|
|
317 | (3) |
|
7.4.6 The stability criterion for edge modes in the FQSHE |
|
|
320 | (2) |
|
7.5 Construction of two-dimensional topological phases from coupled wires |
|
|
322 | (29) |
|
|
322 | (4) |
|
|
326 | (4) |
|
7.5.3 Strategy for constructing topological phases |
|
|
330 | (4) |
|
7.5.4 Reproducing the tenfold way |
|
|
334 | (10) |
|
7.5.5 Fractionalized phases |
|
|
344 | (6) |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (10) |
|
8 Symmetry-protected topological phases in one-dimensional systems |
|
|
361 | (26) |
|
|
|
363 | (1) |
|
8.2 Entanglement and matrix product states |
|
|
364 | (8) |
|
8.2.1 Schmidt decomposition and entanglement |
|
|
364 | (2) |
|
|
366 | (1) |
|
8.2.3 Matrix product states |
|
|
367 | (5) |
|
8.3 Symmetry-protected topological phases |
|
|
372 | (6) |
|
8.3.1 Symmetry transformations of MPS |
|
|
372 | (2) |
|
8.3.2 Classification of projective representations |
|
|
374 | (1) |
|
8.3.3 Symmetry fractionalization |
|
|
375 | (2) |
|
8.3.4 Spin-1 chain and the Haldane phase |
|
|
377 | (1) |
|
|
378 | (5) |
|
8.4.1 Degeneracies in the entanglement spectrum |
|
|
378 | (1) |
|
8.4.2 Extraction of projective representations from the mixed transfer matrix |
|
|
379 | (1) |
|
8.4.3 String order parameters |
|
|
380 | (3) |
|
8.5 Summary 383. Acknowledgement |
|
|
383 | (1) |
|
|
383 | (4) |
|
9 Topological superconducting phases in one dimension |
|
|
387 | (64) |
|
|
|
|
|
389 | (5) |
|
|
389 | (3) |
|
9.1.2 Heuristic arguments |
|
|
392 | (2) |
|
9.2 Spinless p-wave superconductors |
|
|
394 | (6) |
|
9.2.1 Continuum model and phase diagram |
|
|
394 | (3) |
|
9.2.2 Domain walls and Majorana excitations |
|
|
397 | (1) |
|
9.2.3 Topological protection and many-body ground states |
|
|
398 | (2) |
|
9.2.4 Experimentally accessible systems |
|
|
400 | (1) |
|
9.3 Topological insulator edges |
|
|
400 | (3) |
|
|
400 | (2) |
|
9.3.2 Zero-energy states and Majorana operators |
|
|
402 | (1) |
|
|
403 | (4) |
|
|
405 | (1) |
|
9.4.2 Topological insulator limit |
|
|
406 | (1) |
|
9.5 Chains of magnetic adatoms on superconductors |
|
|
407 | (16) |
|
|
408 | (2) |
|
|
410 | (10) |
|
|
420 | (3) |
|
9.6 Non-Abelian statistics |
|
|
423 | (7) |
|
9.6.1 Manipulation of Majorana bound states |
|
|
423 | (2) |
|
9.6.2 Non-Abelian Berry phase |
|
|
425 | (2) |
|
9.6.3 Braiding Majorana zero modes |
|
|
427 | (3) |
|
9.7 Experimental signatures |
|
|
430 | (7) |
|
9.7.1 Conductance signatures |
|
|
430 | (5) |
|
9.7.2 4Pi-periodic Josephson effect |
|
|
435 | (2) |
|
|
437 | (1) |
|
9.A Pairing Hamiltonians: BdG and second quantization |
|
|
438 | (3) |
|
9.B Proximity-induced pairing |
|
|
441 | (3) |
|
|
444 | (3) |
|
9.C.1 Adatom as a classical magnetic impurity |
|
|
444 | (2) |
|
9.C.2 Adatom as a spin-1/2 Anderson impurity |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
447 | (4) |
|
10 Transport of Dirac surface states |
|
|
451 | (38) |
|
|
|
453 | (5) |
|
10.1.1 Purpose of the lectures |
|
|
453 | (1) |
|
10.1.2 Dirac surface states of topological insulators |
|
|
453 | (2) |
|
|
455 | (2) |
|
10.1.4 Overview of transport properties |
|
|
457 | (1) |
|
10.2 Minimal conductivity close to the Dirac point |
|
|
458 | (3) |
|
|
458 | (1) |
|
10.2.2 Clean large tunnel junction |
|
|
459 | (1) |
|
10.2.3 Minimal conductivity from linear response theory |
|
|
460 | (1) |
|
10.3 Classical conductivity at high Fermi energy |
|
|
461 | (11) |
|
10.3.1 Boltzmann equation |
|
|
462 | (4) |
|
10.3.2 Linear response approach |
|
|
466 | (6) |
|
10.4 Quantum transport of Dirac fermions |
|
|
472 | (12) |
|
10.4.1 Quantum correction to the conductivity: weak antilocalization |
|
|
474 | (3) |
|
10.4.2 Universal conductance fluctuations |
|
|
477 | (2) |
|
10.4.3 Notion of universality class |
|
|
479 | (4) |
|
10.4.4 Effect of a magnetic field |
|
|
483 | (1) |
|
|
484 | (1) |
|
|
484 | (5) |
|
11 Spin textures in quantum Hall systems |
|
|
489 | (42) |
|
|
|
491 | (2) |
|
11.2 Physical properties of spin textures |
|
|
493 | (15) |
|
|
493 | (4) |
|
11.2.2 Construction of spin textures |
|
|
497 | (4) |
|
11.2.3 Energetics of spin textures |
|
|
501 | (2) |
|
11.2.4 Choice of an effective model |
|
|
503 | (4) |
|
11.2.5 Classical ground states of the CPd-1 model |
|
|
507 | (1) |
|
|
508 | (9) |
|
11.3.1 Perturbation theory for degenerate Hamiltonians |
|
|
508 | (3) |
|
11.3.2 Remarks on the Hessian of the exchange energy |
|
|
511 | (2) |
|
11.3.3 Variational procedure for energy minimization |
|
|
513 | (3) |
|
11.3.4 Properties of periodic textures |
|
|
516 | (1) |
|
11.4 Collective excitations around periodic textures |
|
|
517 | (5) |
|
11.4.1 Time-dependent Hartree-Fock equations |
|
|
517 | (1) |
|
11.4.2 Collective-mode spectrum |
|
|
518 | (3) |
|
11.4.3 Towards an effective sigma model description |
|
|
521 | (1) |
|
11.A Coherent states in the lowest Landau level |
|
|
522 | (1) |
|
11.B From covariant symbols on a two-dimensional plane to operators |
|
|
523 | (1) |
|
11.C Single-particle density matrix in a texture Slater determinant |
|
|
524 | (2) |
|
11.D Hamiltonians with quadratic covariant symbol |
|
|
526 | (1) |
|
|
527 | (1) |
|
|
527 | (4) |
|
12 Out-of-equilibrium behaviour in topologically ordered systems on a lattice: fractionalized excitations and kinematic constraints |
|
|
531 | (36) |
|
|
|
533 | (1) |
|
12.1 Topological order, broadly interpreted |
|
|
533 | (1) |
|
12.2 Example 1: (classical) spin ice |
|
|
534 | (18) |
|
|
538 | (7) |
|
|
545 | (7) |
|
12.3 Example 2: Kitaev's toric code |
|
|
552 | (12) |
|
|
553 | (2) |
|
12.3.2 Elementary excitations |
|
|
555 | (2) |
|
|
557 | (2) |
|
12.3.4 Intriguing comparison: kinetically constrained models |
|
|
559 | (5) |
|
|
564 | (1) |
|
|
564 | (1) |
|
|
565 | (2) |
|
13 What is life?-70 years after Schrodinger |
|
|
567 | (99) |
|
|
|
570 | (1) |
|
|
571 | (21) |
|
|
571 | (1) |
|
13.1.2 Protein chemistry and the genetic code |
|
|
572 | (1) |
|
13.1.3 Data banks and experiments |
|
|
573 | (4) |
|
13.1.4 Phases of proteins |
|
|
577 | (3) |
|
|
580 | (2) |
|
13.1.6 Ramachandran angles |
|
|
582 | (2) |
|
13.1.7 Homology modelling |
|
|
584 | (1) |
|
|
585 | (2) |
|
13.1.9 All-atom simulations |
|
|
587 | (1) |
|
|
588 | (4) |
|
13.1.11 Other physics-based approaches |
|
|
592 | (1) |
|
|
592 | (7) |
|
13.2.1 The importance of symmetry breaking |
|
|
593 | (1) |
|
13.2.2 An optical illusion |
|
|
593 | (1) |
|
|
594 | (2) |
|
13.2.4 Spin-charge separation |
|
|
596 | (2) |
|
13.2.5 All-atom is Landau liquid |
|
|
598 | (1) |
|
13.3 Strings in three space dimensions |
|
|
599 | (13) |
|
13.3.1 Abelian Higgs model and the limit of slow spatial variations |
|
|
600 | (2) |
|
13.3.2 The Frenet equation |
|
|
602 | (1) |
|
13.3.3 Frame rotation and Abelian Higgs multiplet |
|
|
603 | (2) |
|
13.3.4 The unique string Hamiltonian |
|
|
605 | (1) |
|
13.3.5 Integrable hierarchy |
|
|
605 | (1) |
|
13.3.6 Strings from solitons |
|
|
606 | (2) |
|
13.3.7 Anomaly in the Frenet frames |
|
|
608 | (2) |
|
|
610 | (2) |
|
13.4 Discrete Frenet frames |
|
|
612 | (12) |
|
13.4.1 The Calpha trace reconstruction |
|
|
614 | (1) |
|
13.4.2 Universal discretized energy |
|
|
615 | (3) |
|
13.4.3 Discretized solitons |
|
|
618 | (1) |
|
13.4.4 Proteins out of thermal equilibrium |
|
|
619 | (1) |
|
13.4.5 Temperature renormalization |
|
|
620 | (4) |
|
13.5 Solitons and ordered proteins |
|
|
624 | (22) |
|
13.5.1 lambda-repressor as a multisoliton |
|
|
624 | (4) |
|
13.5.2 Structure of myoglobin |
|
|
628 | (7) |
|
13.5.3 Dynamical myoglobin |
|
|
635 | (11) |
|
13.6 Intrinsically disordered proteins |
|
|
646 | (13) |
|
13.6.1 Order versus disorder |
|
|
647 | (2) |
|
13.6.2 hIAPP and type 2 diabetes |
|
|
649 | (2) |
|
13.6.3 hIAPP as a three-soliton |
|
|
651 | (4) |
|
13.6.4 Heating and cooling hIAPP |
|
|
655 | (4) |
|
|
659 | (7) |
|
13.7.1 'What-you-see-is-what-you-have' |
|
|
660 | (6) |
Acknowledgements |
|
666 | (1) |
References |
|
666 | |