Atjaunināt sīkdatņu piekrišanu

Topological Dynamical Systems: An Introduction to the Dynamics of Continuous Mappings [Hardback]

  • Formāts: Hardback, 513 pages, height x width: 240x170 mm, weight: 966 g, 80 Illustrations, black and white
  • Sērija : De Gruyter Studies in Mathematics
  • Izdošanas datums: 29-Jan-2014
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110340739
  • ISBN-13: 9783110340730
  • Hardback
  • Cena: 175,90 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
    • De Gruyter E-books
  • Formāts: Hardback, 513 pages, height x width: 240x170 mm, weight: 966 g, 80 Illustrations, black and white
  • Sērija : De Gruyter Studies in Mathematics
  • Izdošanas datums: 29-Jan-2014
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110340739
  • ISBN-13: 9783110340730
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
Preface v
Notation ix
0 Introduction
1(16)
0.1 Definition and a (very brief) historical overview
1(2)
0.2 Continuous vs. discrete time
3(4)
0.3 The dynamical systems point of view
7(2)
0.4 Examples
9(8)
1 Basic notions
17(56)
1.1 Invariant and periodic points
17(6)
1.2 Invariant sets
23(5)
1.3 Transitivity
28(5)
1.4 Limit sets
33(2)
1.5 Topological conjugacy and factor mappings
35(9)
1.6 Equicontinuity and weak mixing
44(13)
1.7 Miscellaneous examples
57(16)
2 Dynamical systems on the real line
73(44)
2.1 Graphical iteration
73(7)
2.2 Existence of periodic orbits
80(4)
2.3 The truncated tent map
84(3)
2.4 The double of a mapping
87(4)
2.5 The Markov graph of a periodic orbit in an interval
91(10)
2.6 Transitivity of mappings of an interval
101(16)
3 Limit behaviour
117(48)
3.1 Limit sets and attraction
117(9)
3.2 Stability
126(6)
3.3 Stability and attraction for periodic orbits
132(11)
3.4 Asymptotic stability in locally compact spaces
143(10)
3.5 The structure of (asymptotically) stable sets
153(12)
4 Recurrent behaviour
165(53)
4.1 Recurrent points
165(4)
4.2 Almost periodic points and minimal orbit closures
169(6)
4.3 Non-wandering points
175(7)
4.4 Chain-recurrence
182(15)
4.5 Asymptotic stability and basic sets
197(21)
5 Shift systems
218(64)
5.1 Notation and terminology
218(5)
5.2 The shift mapping
223(3)
5.3 Shift spaces
226(10)
5.4 Factor maps
236(8)
5.5 Subshifts and graphs
244(9)
5.6 Recurrence, almost periodicity and mixing
253(29)
6 Symbolic representations
282(43)
6.1 Topological partitions
282(11)
6.2 Expansive systems
293(9)
6.3 Applications
302(23)
7 Erratic behaviour
325(53)
7.1 Stability revisited
325(11)
7.2 Chaos(1): sensitive systems
336(6)
7.3 Chaos(2): scrambled sets
342(13)
7.4 Horseshoes for interval maps
355(10)
7.5 Existence of a horseshoe
365(13)
8 Topological entropy
378(45)
8.1 The definition
378(9)
8.2 Independence of the metric; factor maps
387(4)
8.3 Maps on intervals and circles
391(3)
8.4 The definition with covers
394(8)
8.5 Miscellaneous results
402(4)
8.6 Positive entropy and horseshoes for interval maps
406(17)
A Topology
423(30)
A.1 Elementary notions
423(3)
A.2 Compactness
426(2)
A.3 Continuous mappings
428(2)
A.4 Convergence
430(2)
A.5 Subspaces, products and quotients
432(2)
A.6 Connectedness
434(3)
A.7 Metric spaces
437(7)
A.8 Baire category
444(2)
A.9 Irreducible mappings
446(3)
A.10 Miscellaneous results
449(4)
B The Cantor set
453(12)
B.1 The construction
453(3)
B.2 Proof of Brouwer's Theorem
456(5)
B.3 Cantor spaces
461(4)
C Hints to the Exercises
465(16)
Literature 481(4)
Index 485
Jan de Vries, CWI, Amsterdam, the Netherlands.