|
|
|
|
3 | (34) |
|
1.1 Definitions and Examples |
|
|
3 | (5) |
|
1.2 Convergence, Limits and Continuity |
|
|
8 | (6) |
|
1.3 Completeness: A Fixed Point Theorem |
|
|
14 | (9) |
|
|
23 | (7) |
|
|
30 | (7) |
|
|
37 | (28) |
|
2.1 Definitions and Examples |
|
|
37 | (6) |
|
2.2 Neighborhoods: Continuous Functions |
|
|
43 | (3) |
|
|
46 | (4) |
|
|
50 | (5) |
|
2.5 * Convergence of Nets |
|
|
55 | (6) |
|
|
61 | (4) |
|
|
65 | (32) |
|
3.1 Definitions and Examples |
|
|
65 | (8) |
|
3.2 Metric and Topological Properties |
|
|
73 | (5) |
|
3.3 Finite-Dimensional Normed Spaces |
|
|
78 | (4) |
|
3.4 Continuous Linear Maps |
|
|
82 | (3) |
|
3.5 Continuous Linear Functionals |
|
|
85 | (3) |
|
3.6 Complex Normed Spaces |
|
|
88 | (1) |
|
|
89 | (8) |
|
Part II Differential Calculus |
|
|
|
|
97 | (20) |
|
4.1 Definitions and Elementary Properties |
|
|
97 | (8) |
|
|
105 | (6) |
|
4.3 The Functions Rm → Rn |
|
|
111 | (4) |
|
|
115 | (2) |
|
5 Higher-order derivatives |
|
|
117 | (24) |
|
5.1 Continuous multilinear maps |
|
|
117 | (3) |
|
5.2 Higher-order derivatives |
|
|
120 | (6) |
|
|
126 | (4) |
|
|
130 | (2) |
|
|
132 | (5) |
|
5.6 The functions Rm → Rn |
|
|
137 | (2) |
|
|
139 | (2) |
|
6 Ordinary Differential Equations |
|
|
141 | (24) |
|
6.1 Integrals of Vector-Valued Functions |
|
|
141 | (2) |
|
6.2 Definitions and Examples |
|
|
143 | (5) |
|
6.3 The Cauchy--Lipschitz Theorem |
|
|
148 | (5) |
|
6.4 Additional Results and Linear Equations |
|
|
153 | (4) |
|
|
157 | (3) |
|
|
160 | (5) |
|
7 Implicit Functions and Their Applications |
|
|
165 | (28) |
|
|
165 | (6) |
|
|
171 | (3) |
|
|
174 | (2) |
|
7.4 * The Inverse Function Theorem |
|
|
176 | (6) |
|
7.5 * The Implicit Function Theorem |
|
|
182 | (2) |
|
7.6 * Lagrange Multipliers: General Case |
|
|
184 | (1) |
|
7.7 * Differential Equations: Dependence on the Initial Data |
|
|
185 | (3) |
|
|
188 | (5) |
|
Part III Approximation Methods |
|
|
|
|
193 | (26) |
|
8.1 Lagrange Interpolation |
|
|
194 | (2) |
|
8.2 Minimization of Errors: Chebyshev Polynomials |
|
|
196 | (4) |
|
8.3 Divided Differences: Newton's Interpolating Formula |
|
|
200 | (3) |
|
8.4 Hermite Interpolation |
|
|
203 | (4) |
|
8.5 Theorems of Weierstrass and Fejer |
|
|
207 | (5) |
|
|
212 | (2) |
|
|
214 | (5) |
|
|
219 | (12) |
|
9.1 Gram-Schmidt Orthogonalization |
|
|
219 | (1) |
|
9.2 Orthogonal Polynomials |
|
|
220 | (3) |
|
9.3 Roots of Orthogonal Polynomials |
|
|
223 | (4) |
|
|
227 | (4) |
|
|
231 | (36) |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
235 | (3) |
|
10.4 Theorems of Stieltjes and Erdos--Turan |
|
|
238 | (3) |
|
10.5 Euler's and Stirling's Formulas |
|
|
241 | (5) |
|
10.6 Bernoulli Polynomials |
|
|
246 | (5) |
|
10.7 Euler's General Formula |
|
|
251 | (4) |
|
10.8 Asymptotic Expansions: Stirling's Series |
|
|
255 | (5) |
|
10.9 The Trapezoidal Rule: Romberg's Method |
|
|
260 | (3) |
|
|
263 | (4) |
|
|
267 | (16) |
|
11.1 * Descartes's Rule of Signs |
|
|
267 | (2) |
|
|
269 | (2) |
|
11.3 * Roots of Polynomials |
|
|
271 | (1) |
|
11.4 * The Method of Householder and Bauer |
|
|
272 | (3) |
|
|
275 | (2) |
|
|
277 | (3) |
|
|
280 | (3) |
|
12 Numerical Solution of Differential Equations |
|
|
283 | (16) |
|
12.1 Approximation of Solutions |
|
|
283 | (6) |
|
12.2 The Runge--Kutta Method |
|
|
289 | (1) |
|
12.3 The Dirichlet Problem |
|
|
290 | (3) |
|
12.4 The Monte Carlo Method |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
295 | (4) |
|
Hints and Solutions to Some Exercises |
|
|
299 | (38) |
|
Comments and Historical References |
|
|
337 | (12) |
|
|
337 | (2) |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
342 | (1) |
|
Ordinary Differential Equations |
|
|
343 | (1) |
|
Implicit Functions and Their Applications |
|
|
344 | (2) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
347 | (1) |
|
Numerical Solution of Differential Equations |
|
|
348 | (1) |
Bibliography |
|
349 | (20) |
Teaching Suggestions |
|
369 | (2) |
Subject Index |
|
371 | (6) |
Name Index |
|
377 | |