Atjaunināt sīkdatņu piekrišanu

E-grāmata: Total-Reflection X-Ray Fluorescence Analysis and Related Methods

  • Formāts - EPUB+DRM
  • Cena: 145,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Providing an accessible introduction into the use of Total-Reflection X-ray Fluorescence (TXRF) Analysis, both from a theoretical point of view and for practical applications, this new edition ofTotal-Reflection X-Ray Fluorescence Analysis is completely updated and enlarged to emphasize new methods and techniques. Written to enable students and scientists to evaluate the suitability of a TXRF method for their specific needs, the text provides an overview to the physical fundamentals and principles of Total-Reflection X-ray Fluorescence (TXRF) Analysis, explains instrumentation and setups, and describes applications in a great variety of disciplines.

Recenzijas

The inclusion of critical evaluations and recommendations for the applicability of the TXRF and GI-XRF methods makes this book a valuable asset for anyone employing or improving upon these techniques.  (Anal Bioanal Chem, 1 April 2015)

Foreword xiii
Acknowledgments xv
List Of Acronyms xvii
List Of Physical Units And Subunits xxii
List Of Symbols xxiii
Chapter 1 Fundamentals Of X-Ray Fluorescence 1(78)
1.1 A Short History of XRF
2(6)
1.2 The New Variant TXRF
8(7)
1.2.1 Retrospect on its Development
8(5)
1.2.2 Relationship of XRF and TXRF
13(2)
1.3 Nature and Production of X-Rays
15(29)
1.3.1 The Nature of X-Rays
15(2)
1.3.2 X-Ray Tubes as X-Ray Sources
17(12)
1.3.2.1 The Line Spectrum
19(8)
1.3.2.2 The Continuous Spectrum
27(2)
1.3.3 Polarization of X-Rays
29(1)
1.3.4 Synchrotron Radiation as X-Ray Source
30(14)
1.3.4.1 Electrons in Fields of Bending Magnets
32(3)
1.3.4.2 Radiation Power of a Single Electron
35(1)
1.3.4.3 Angular and Spectral Distribution of SR
36(6)
1.3.4.4 Comparison with Black-Body Radiation
42(2)
1.4 Attenuation of X-Rays
44(9)
1.4.1 Photoelectric Absorption
46(3)
1.4.2 X-Ray Scatter
49(2)
1.4.3 Total Attenuation
51(2)
1.5 Deflection of X-Rays
53(21)
1.5.1 Reflection and Refraction
53(6)
1.5.2 Diffraction and Bragg's Law
59(3)
1.5.3 Total External Reflection
62(9)
1.5.3.1 Reflectivity
66(1)
1.5.3.2 Penetration Depth
67(4)
1.5.4 Refraction and Dispersion
71(3)
References
74(5)
Chapter 2 Principles Of Total Reflection XRF 79(47)
2.1 Interference of X-Rays
80(8)
2.1.1 Double-Beam Interference
80(4)
2.1.2 Multiple-Beam Interference
84(4)
2.2 X-Ray Standing Wave Fields
88(12)
2.2.1 Standing Waves in Front of a Thick Substrate
88(6)
2.2.2 Standing Wave Fields Within a Thin Layer
94(6)
2.2.3 Standing Waves Within a Multilayer or Crystal
100(1)
2.3 Intensity of Fluorescence Signals
100(12)
2.3.1 Infinitely Thick and Flat Substrates
102(2)
2.3.2 Granular Residues on a Substrate
104(2)
2.3.3 Buried Layers in a Substrate
106(2)
2.3.4 Reflecting Layers on Substrates
108(2)
2.3.5 Periodic Multilayers and Crystals
110(2)
2.4 Formalism For Intensity Calculations
112(11)
2.4.1 A Thick and Flat Substrate
113(3)
2.4.2 A Thin Homogeneous Layer on a Substrate
116(4)
2.4.3 A Stratified Medium of Several Layers
120(3)
References
123(3)
Chapter 3 Instrumentation For TXRF And GI-XRF 126(79)
3.1 Basic Instrumental Setup
128(2)
3.2 High and Low-Power X-Ray Sources
130(4)
3.2.1 Fine-Focus X-Ray Tubes
131(1)
3.2.2 Rotating Anode Tubes
132(1)
3.2.3 Air-Cooled X-Ray Tubes
133(1)
3.3 Synchrotron Facilities
134(16)
3.3.1 Basic Setup with Bending Magnets
136(1)
3.3.2 Undulators, Wigglers, and FELs
137(2)
3.3.3 Facilities Worldwide
139(11)
3.4 The Beam Adapting Unit
150(10)
3.4.1 Low-Pass Filters
150(5)
3.4.2 Simple Monochromators
155(2)
3.4.3 Double-Crystal Monochromators
157(3)
3.5 Sample Positioning
160(4)
3.5.1 Sample Carriers
161(1)
3.5.2 Fixed Angle Adjustment for TXRF ("Angle Cut")
162(1)
3.5.3 Stepwise-Angle Variation for GI-XRF ("Angle Scan")
162(2)
3.6 Energy-Dispersive Detection of X-Rays
164(9)
3.6.1 The Semiconductor Detector
165(2)
3.6.2 The Silicon Drift Detector
167(2)
3.6.3 Position Sensitive Detectors
169(4)
3.7 Wavelength-Dispersive Detection of X-Rays
173(10)
3.7.1 Dispersing Crystals with Soller Collimators
176(2)
3.7.2 Gas-Filled Detectors
178(4)
3.7.3 Scintillation Detectors
182(1)
3.8 Spectra Registration and Evaluation
183(17)
3.8.1 The Registration Unit
183(2)
3.8.2 Performance Characteristics
185(22)
3.8.2.1 Detector Efficiency
185(3)
3.8.2.2 Spectral Resolution
188(6)
3.8.2.3 Input-Output Yield
194(3)
3.8.2.4 The Escape-Peak Phenomenon
197(3)
References
200(5)
Chapter 4 Performance Of TXRF And GI-XRF Analyses 205(86)
4.1 Preparations for Measurement
207(15)
4.1.1 Cleaning Procedures
207(4)
4.1.2 Preparation of Samples
211(4)
4.1.3 Presentation of a Specimen
215(7)
4.1.3.1 Microliter Sampling by Pipettes
216(1)
4.1.3.2 Nanoliter Droplets by Capillaries
217(1)
4.1.3.3 Picoliter-Sized Droplets by Inkjet Printing
218(2)
4.1.3.4 Microdispensing of Liquids by Triple-Jet Technology
220(1)
4.1.3.5 Solid Matter of Different Kinds
220(2)
4.2 Acquisition of Spectra
222(6)
4.2.1 The Setup for Excitation with X-Ray Tubes
222(3)
4.2.2 Excitation by Synchrotron Radiation
225(1)
4.2.3 Recording the Spectrograms
226(2)
4.2.3.1 Energy-Dispersive Variant
227(1)
4.2.3.2 Wavelength-Dispersive Mode
227(1)
4.3 Qualitative Analysis
228(10)
4.3.1 Shortcomings of Spectra
228(8)
4.3.1.1 Strong Spectral Interferences
229(6)
4.3.1.2 Regard of Sum Peaks
235(1)
4.3.1.3 Dealing with Escape Peaks
235(1)
4.3.2 Unambiguous Element Detection
236(1)
4.3.3 Fingerprint Analysis
237(1)
4.4 Quantitative Micro- and Trace Analyses
238(19)
4.4.1 Prerequisites for Quantification
240(4)
4.4.1.1 Determination of Net Intensities
240(1)
4.4.1.2 Determination of Relative Sensitivities
241(3)
4.4.2 Quantification by Internal Standardization
244(4)
4.4.2.1 Standard Addition for a Single Element
245(1)
4.4.2.2 Multielement Determinations
246(2)
4.4.3 Conditions and Limitations
248(9)
4.4.3.1 Mass and Thickness of Thin Layers
249(2)
4.4.3.2 Residues of Microliter Droplets
251(1)
4.4.3.3 Coherence Length of Radiation
252(5)
4.5 Quantitative Surface and Thin-Layer Analyses by TXRF
257(10)
4.5.1 Distinguishing Between Types of Contamination
257(5)
4.5.1.1 Bulk-Type Impurities
257(1)
4.5.1.2 Particulate Contamination
258(1)
4.5.1.3 Thin-Layer Covering
259(1)
4.5.1.4 Mixture of Contaminations
259(3)
4.5.2 Characterization of Thin Layers by TXRF
262(5)
4.5.2.1 Multifold Repeated Chemical Etching
262(2)
4.5.2.2 Stepwise Repeated Planar Sputter Etching
264(3)
4.6 Quantitative Surface and Thin-Layer Analyses by GI-XRF
267(17)
4.6.1 Recording Angle-Dependent Intensity Profiles
268(2)
4.6.2 Considering the Footprint Effect
270(2)
4.6.3 Regarding the Coherence Length
272(2)
4.6.4 Depth Profiling at Grazing Incidence
274(9)
4.6.5 Including the Surface Roughness
283(1)
References
284(7)
Chapter 5 Different Fields Of Applications 291(92)
5.1 Environmental and Geological Applications
292(15)
5.1.1 Natural Water Samples
292(5)
5.1.2 Airborne Particulates
297(5)
5.1.3 Biomonitoring
302(4)
5.1.4 Geological Samples
306(1)
5.2 Biological and Biochemical Applications
307(10)
5.2.1 Beverages: Water, Tea, Coffee, Must, and Wine
308(4)
5.2.2 Vegetable and Essential Oils
312(1)
5.2.3 Plant Materials and Extracts
312(3)
5.2.4 Unicellular Organisms and Biomolecules
315(2)
5.3 Medical, Clinical, and Pharmaceutical Applications
317(12)
5.3.1 Blood, Plasma, and Serum
317(3)
5.3.2 Urine, Cerebrospinal, and Amniotic Fluid
320(2)
5.3.3 Tissue Samples
322(5)
5.3.3.1 Freeze-Cutting of Organs by a Microtome
322(2)
5.3.3.2 Healthy and Cancerous Tissue Samples
324(3)
5.3.4 Medicines and Remedies
327(2)
5.4 Industrial or Chemical Applications
329(28)
5.4.1 Ultrapure Reagents
330(1)
5.4.2 High-Purity Silicon and Silica
331(1)
5.4.3 Ultrapure Aluminum
332(2)
5.4.4 High-Purity Ceramic Powders
334(2)
5.4.5 Impurities in Nuclear Materials
336(1)
5.4.6 Hydrocarbons and Their Polymers
336(2)
5.4.7 Contamination-Free Wafer Surfaces
338(8)
5.4.7.1 Wafers Controlled by Direct TXRF
340(2)
5.4.7.2 Contaminations Determined by VPD-TXRF
342(4)
5.4.8 Characterization of Nanostructured Samples
346(11)
5.4.8.1 Shallow Layers by Sputter Etching and TXRF
346(1)
5.4.8.2 Thin-Layer Structures by Direct GI-XRF
347(7)
5.4.8.3 Nanoparticles by TXRF and GI-XRF
354(3)
5.5 Art Historical and Forensic Applications
357(10)
5.5.1 Pigments, Inks, and Varnishes
357(4)
5.5.2 Metals and Alloys
361(2)
5.5.3 Textile Fibers and Glass Splinters
363(2)
5.5.4 Drug Abuse and Poisoning
365(2)
References
367(16)
Chapter 6 Efficiency And Evaluation 383(50)
6.1 Analytical Considerations
384(13)
6.1.1 General Costs of Installation and Upkeep
384(1)
6.1.2 Detection Power for Elements
385(3)
6.1.3 Reliability of Determinations
388(3)
6.1.4 The Great Variety of Suitable Samples
391(2)
6.1.5 Round-Robin Tests
393(4)
6.2 Utility and Competitiveness of TXRF and GI-XRF
397(13)
6.2.1 Advantages and Limitations
398(2)
6.2.2 Comparison of TXRF with Competitors
400(9)
6.2.3 GI-XRF and Competing Methods
409(1)
6.3 Perception and Propagation of TXRF Methods
410(14)
6.3.1 Commercially Available Instruments
410(3)
6.3.2 Support by the International Atomic Energy Agency
413(1)
6.3.3 Worldwide Distribution of TXRF and Related Methods
413(4)
6.3.4 Standardization by ISO and DIN
417(3)
6.3.5 International Cooperation and Activity
420(4)
References
424(9)
Chapter 7 Trends And Future Prospects 433(68)
7.1 Instrumental Developments
434(11)
7.1.1 Excitation by Synchrotron Radiation
434(2)
7.1.2 New Variants of X-Ray Sources
436(2)
7.1.3 Capillaries and Waveguides for Beam Adapting
438(4)
7.1.4 New Types of X-Ray Detectors
442(3)
7.2 Methodical Developments
445(18)
7.2.1 Detection of Light Elements
445(4)
7.2.2 Ablation and Deposition Techniques
449(3)
7.2.3 Grazing Exit X-Ray Fluorescence
452(7)
7.2.4 Reference-Free Quantification
459(3)
7.2.5 Time-Resolved In Situ Analysis
462(1)
7.3 Future Prospects by Combinations
463(28)
7.3.1 Combination with X-Ray Reflectometry
464(2)
7.3.2 EXAFS and Total Reflection Geometry
466(2)
7.3.3 Combination with XANES or NEXAFS
468(12)
7.3.4 X-Ray Diffractometry at Total Reflection
480(6)
7.3.5 Total Reflection and X-Ray Photoelectron Spectrometry
486(5)
References
491(10)
Index 501
Reinhold Klockenkämper is physicist and was head of the Physical Analysis Research Group at ISAS in Dortmund, Germany. Furthermore, he was Associate Lecturer at the University of Applied Sciences in Dortmund. His experience in X-ray spectral analysis spans four decades and he published over 100 scientific papers and several book articles. He was member of three Editorial Advisory Boards of international journals for many years. In 1988 and 1996 he organized the 2nd and the 6th conference on TXRF in Dortmund. In 1996 he published the first edition of this monograph on TXRF. Professor Klockenkämper retired in 2002, but is currently working as guest scientist at ISAS.

Alex von Bohlen is engineer and senior scientist at the Leibniz-Institut für Analytische Wissenschaften ISAS e.V. in Dortmund. He is head of the X-ray laboratories and of the scanning electron and optical microscopy facilities. In addition, he is responsible for the beamline 2 at DELTA, Center for Synchrotron Radiation at the Technical University of Dortmund. Dr. von Bohlen has been working in the field of TXRF since more than 25 years, has published more than 120 articles, mostly dedicated to TXRF, and is member of two Editorial Advisary Boards. In 2011 he organized the 14th conference on TXRF in Dortmund.