Atjaunināt sīkdatņu piekrišanu

E-grāmata: Toward General Theory Of Differential-operator And Kinetic Models

(Irkutsk State Univ, Russia), (Nat'l Univ Of Colombia, Colombia), (Russian Academy Of Sci, Russia)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 118,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume provides a comprehensive introduction to the modern theory of differential-operator and kinetic models including Vlasov–Maxwell, Fredholm, Lyapunov–Schmidt branching equations to name a few. This book will bridge the gap in the considerable body of existing academic literature on the analytical methods used in studies of complex behavior of differential-operator equations and kinetic models. This monograph will be of interest to mathematicians, physicists and engineers interested in the theory of such nonregular systems.

Foreword vii
Introduction xv
Acknowledgments xxi
Part I Operator and Differential-Operator Equations
1(132)
1 Auxiliary Information on the Theory of Linear Operators
3(36)
1.1 Generalized Jordan Chains, Sets and Root Numbers of Linear Operators
3(6)
1.2 Regularization of Linear Equations with Fredholm Operators
9(7)
1.3 Principal Theorem of Regularization of Linear Equations by the Perturbation Method
16(6)
1.4 Regularization of Linear Equations Based on the Perturbation Theory in Hilbert Spaces
22(9)
1.5 Regularization with Vector Regularizing Parameter for the First Kind Equations
31(8)
2 Volterra Operator Equations with Piecewise Continuous Kernels: Solvability and Regularized Approximate Methods
39(44)
2.1 Theory of the Volterra Operator Equations with Piecewise Continuous Kernels
39(23)
2.2 Numerical Methods
62(21)
3 Nonlinear Differential Equations Near Branching Points
83(14)
3.1 Problem Statement
84(9)
3.2 Open Problems and Generalizations
93(2)
3.3 Magnetic Insulation Model Example
95(2)
4 Nonlinear Operator Equations with a Functional Perturbation of the Argument
97(8)
4.1 Nonlinear Operator Equations
97(6)
4.2 Conclusion
103(2)
5 Nonlinear Systems' Equilibrium Points: Stability, Branching, Blow-Up
105(12)
5.1 Reduction of a Nonlinear System in the Neighborhood of an Equilibrium Point to a Single Differential Equation
108(3)
5.2 The Construction of a Solution of a Nonlinear System by the Successive Approximations Method
111(3)
5.3 Open Problems
114(3)
6 Nonclassic Boundary Value Problems in the Theory of Irregular Systems of Equations with Partial Derivatives
117(14)
6.1 Skeleton Chains of Linear Operators
120(2)
6.2 Abstract Irregular Equation Reduction to the Sequence of Regular Equations
122(7)
6.3 Skeleton Decomposition in the Theory of Irregular Ordinary Differential Equation in Banach Space
129(2)
7 Epilogue for Part I
131(2)
Part II Lyapunov Methods in Theory of Nonlinear Equations with Parameters
133(154)
8 Lyapunov Convex Majorants in the Existence Theorems
135(24)
8.1 Parameter-Independent Majorants
137(10)
8.2 Majorants Depending on a Parameter
147(6)
8.3 Solution Existence Domain
153(6)
9 Investigation of Bifurcation Points of Nonlinear Equations
159(10)
9.1 Lyapunov--Schmidt Method in the Problem of a Bifurcation Point
161(3)
9.2 Open Problems
164(5)
10 General Existence Theorems for the Bifurcation Points
169(14)
10.1 Open Problem
179(4)
11 Construction of Asymptotics in a Neighborhood of a Bifurcation Point
183(22)
11.1 Analytic Lyapunov--Schmidt Method in the Study of Branching Equations
183(4)
11.2 Variational Methods in the Study of Branching Equations
187(18)
12 Regularization of Computation of Solutions in a Branch Point Neighborhood
205(8)
12.1 Construction of the Regularization Equation in the Problem at a Branch Point
206(1)
12.2 Definition and Properties of Simple Solutions
207(3)
12.3 Construction of Regularization Equation of Simple Solutions
210(3)
13 Iteration Methods, Analytical Initial Approximations, Interlaced Equations
213(8)
13.1 Iterations and Uniformization of Branching Solutions
213(1)
13.2 Branching Equation and the Selection of Initial Approximation
214(7)
14 Iterative Methods Using Newton Diagrams
221(20)
14.1 One-Step Iteration Method
224(4)
14.2 N-step Iteration Method
228(6)
14.3 Iteration Method for Nonlinear Equation Invariant Under Transformation Groups
234(7)
15 Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods
241(16)
15.1 Construction of the Minimal Branch of Solutions of Equation with Fredholm Operator
243(6)
15.2 Sufficient Conditions of the Minimal Branch Existence
249(8)
16 Successive Approximations to the Solutions to Nonlinear Equations with a Vector Parameter
257(8)
16.1 Existence Theorem and Successive Approximations
258(7)
17 Interlaced and Potential Branching Equation
265(20)
17.1 Property of (S, K)-interlacing of an Equation and Its Inheritance by Branching Equation
266(5)
17.2 (T, M)-interlaced and (T2, M)-interlaced Branching Equation
271(3)
17.3 α-Parametric Interlaced Branching Equation
274(3)
17.4 Interlaced Branching Equation of Potential Type
277(8)
18 Epilogue for Part-II
285(2)
Part III Kinetic Models
287(172)
19 The Family of Steady-State Solutions of Vlasov--Maxwell System
289(24)
19.1 Ansatz of the Distribution Function and Reduction of Stationary Vlasov--Maxwell Equations to Elliptic System
289(24)
20 Boundary Value Problems for the Vlasov--Maxwell System
313(10)
20.1 Introduction
313(6)
20.2 Collisionless Kinetic Models (Classical and Relativistic Vlasov--Maxwell Systems)
319(1)
20.3 Quantum Models: Wigner--Poisson and Schrodinger--Poisson Systems
320(1)
20.4 Mixed Quantum-Classical Kinetic Systems
320(3)
21 Stationary Solutions of Vlasov--Maxwell System
323(12)
21.1 Problem Reduction to the System of Nonlinear Elliptic Equations
324(5)
21.2 System Reductions
329(6)
22 Existence of Solutions for the Boundary Value Problem
335(14)
22.1 Existence of Solution for Nonlocal Boundary Value Problem
342(7)
23 Nonstationary Solutions of the Vlasov--Maxwell System
349(14)
23.1 Reduction of the Vlasov--Maxwell System to Nonlinear Wave Equation
349(8)
23.2 Existence of Nonstationary Solutions of the Vlasov--Maxwell System in the Bounded Domain
357(6)
24 Linear Stability of the Stationary Solutions of the Vlasov--Maxwell System
363(10)
25 Bifurcation of Stationary Solutions of the Vlasov--Maxwell System
373(14)
25.1 Bifurcation of Solutions of Nonlinear Equations in Banach Spaces
377(9)
25.2 Conclusions
386(1)
26 Statement of the Boundary Value Problem and the Bifurcation Problem
387(14)
27 Resolving Branching Equation
401(14)
27.1 The Existence Theorem for Bifurcation Points and the Construction of Asymptotic Solutions
404(11)
28 Numerical Modeling of the Limit Problem for the Magnetically Noninsulated Diode
415(38)
28.1 Introduction
415(1)
28.2 Description of Vacuum Diode
416(1)
28.3 Shot Noise in a Diode
417(2)
28.4 Description of the Mathematical Model
419(5)
28.5 Solution Trajectory, Upper and Lower Solutions
424(10)
28.6 Second Lower Solution Hypothesis
434(4)
28.7 Numerical Methods
438(10)
28.8 Numerical Modeling
448(5)
29 Open Problems
453(6)
Bibliography 459(12)
Index 471