Atjaunināt sīkdatņu piekrišanu

E-grāmata: Towards Bayesian Model-Based Demography: Agency, Complexity and Uncertainty in Migration Studies

Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by ,
  • Formāts: PDF+DRM
  • Sērija : Methodos Series 17
  • Izdošanas datums: 09-Dec-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030830397
  • Formāts - PDF+DRM
  • Cena: 3,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Methodos Series 17
  • Izdošanas datums: 09-Dec-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030830397

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This open access book presents a ground-breaking approach to developing micro-foundations for demography and migration studies. It offers a unique and novel methodology for creating empirically grounded agent-based models of international migration – one of the most uncertain population processes and a top-priority policy area. The book discusses in detail the process of building a simulation model of migration, based on a population of intelligent, cognitive agents, their networks and institutions, all interacting with one another. The proposed model-based approach integrates behavioural and social theory with formal modelling, by embedding the interdisciplinary modelling process within a wider inductive framework based on the Bayesian statistical reasoning. Principles of uncertainty quantification are used to devise innovative computer-based simulations, and to learn about modelling the simulated individuals and the way they make decisions. The identified knowledge gaps are subsequently filled with information from dedicated laboratory experiments on cognitive aspects of human decision-making under uncertainty. In this way, the models are built iteratively, from the bottom up, filling an important epistemological gap in migration studies, and social sciences more broadly.

Recenzijas

The material collected by Jakub Bijak and his team constitutes a valuable resource for scholars interested in modelling individual decisions, not necessarily restricted to migration processes. Researchers who already gained some experience in social simulation will receive many inspirations for improving their own research and rise to the next level. In this way, this book has the potential to advance the art of modelling in the social sciences. (Thomas Fent, European Journal of Population, Vol. 38, 2022)

Part I: Preliminaries:
Chapter
1. Introduction.
Chapter
2. Uncertainty and complexity: towards model-based demography.- Part II: Elements of the modelling process.
Chapter
3. Principles and state of the art of agent-based migration modelling.
Chapter
4. Building a knowledge base for the model.
Chapter
5. Uncertainty quantification, model calibration and sensitivity.
Chapter
6. The boundaries of cognition and decision making.
Chapter
7. Agent-based modelling and simulation with domain-specific languages.- Part III: Model results, applications, and reflections.
Chapter
8. Towards more realistic models.
Chapter
9. Bayesian model-based approach: impact on science and policy.
Chapter
10. Open science, replicability, and transparency in modelling.
Chapter
11. Conclusions: towards a Bayesian modelling process.

Jakub Bijak is Professor of Statistical Demography at the University of Southampton. He has background in economics (PhD 2008, Warsaw School of Economics) and over 20 years work experience in academia and international civil service. His research focuses on demographic uncertainty, population and migration models and forecasts, and the demography of armed conflict. He has been awarded the Allianz European Demographer Award (2015) and the Jerzy Z Holzer Medal (2007) for work on migration modelling. Leader of a European Research Council project Bayesian agent-based population studies (www.baps-project.eu), and a Horizon 2020 project QuantMig: Quantifying Migration Scenarios for Better Policy (www.quantmig.eu).