Atjaunināt sīkdatņu piekrišanu

E-grāmata: Training Data for Machine Learning

  • Formāts: 332 pages
  • Izdošanas datums: 08-Nov-2023
  • Izdevniecība: O'Reilly Media
  • Valoda: eng
  • ISBN-13: 9781492094494
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 46,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 332 pages
  • Izdošanas datums: 08-Nov-2023
  • Izdevniecība: O'Reilly Media
  • Valoda: eng
  • ISBN-13: 9781492094494
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. Data science professionals and machine learning engineers will gain a solid understanding of the concepts, tools, and processes needed to:

  • Design, deploy, and ship training data for production-grade deep learning applications
  • Integrate with a growing ecosystem of tools
  • Recognize and correct new training data-based failure modes
  • Improve existing system performance and avoid development risks
  • Confidently use automation and acceleration approaches to more effectively create training data
  • Avoid data loss by structuring metadata around created datasets
  • Clearly explain training data concepts to subject matter experts and other shareholders
  • Successfully maintain, operate, and improve your system