Atjaunināt sīkdatņu piekrišanu

Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXVII 2018 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 193 pages, height x width: 235x155 mm, weight: 454 g, 61 Illustrations, black and white; VII, 193 p. 61 illus., 1 Paperback / softback
  • Sērija : Transactions on Large-Scale Data- and Knowledge-Centered Systems 10940
  • Izdošanas datums: 17-Aug-2018
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662579316
  • ISBN-13: 9783662579312
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 193 pages, height x width: 235x155 mm, weight: 454 g, 61 Illustrations, black and white; VII, 193 p. 61 illus., 1 Paperback / softback
  • Sērija : Transactions on Large-Scale Data- and Knowledge-Centered Systems 10940
  • Izdošanas datums: 17-Aug-2018
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662579316
  • ISBN-13: 9783662579312
Citas grāmatas par šo tēmu:
This, the 37th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains five revised selected regular papers. Topics covered include data security in clouds, privacy languages, probabilistic modelling in linked data integration, business intelligence based on multi-agent systems, collaborative filtering, and prediction accuracy.
Keeping Secrets by Separation of Duties while Minimizing the Amount of Cloud Servers.- LPL, Towards a GDPR-Compliant Privacy Language: Formal Definition and Usage.- Quantifying and Propagating Uncertainty in Automated Linked Data Integration.- A Comprehensive Approach for Designing Business-Intelligence Solutions with Multi-Agent Systems in Distributed Environments.- Enhancing Rating Prediction Quality through Improving the Accuracy of Detection of Shifts in Rating Practices.