Atjaunināt sīkdatņu piekrišanu

E-grāmata: Transdermal and Intradermal Delivery of Therapeutic Agents: Application of Physical Technologies

  • Formāts: 309 pages
  • Izdošanas datums: 16-May-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439805107
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 309 pages
  • Izdošanas datums: 16-May-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439805107

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Skin, once thought to be an impenetrable barrier, is an extremely active organ capable of interacting with its environment. Advancements in science combined with the need for diverse drug delivery modalities have introduced a variety of transdermal and intradermal products for existing drugs at a fraction of the cost of new drug development. Commercialization of transdermal drug delivery requires technology from many disciplines beyond pharmaceutical sciences, such as polymer chemistry, adhesion sciences, mass transport, web film coating, printing, and medical technology. A comprehensive discussion of these technologies and practices, Transdermal and Intradermal Delivery of Therapeutic Agents: Application of Physical Technologies, covers: Commercial development of devices and products based on transdermal physical enhancement technologies, Selecting optimal enhancement technology for a specific drug molecule using case studies that cover physicochemical properties as well as practical commercial considerations related to cost, unmet clinical needs, marketing, or intellectual property protection, Technologies such as microneedles, iontophoresis, electroporation, and sonophoresis with examples for delivery of small molecules, cosmeceuticals, proteins, andvaccines, Practical information on experimental procedures and challenges related to skin irritation and safety issues. Up-to-date and accessible to researchers and industry experts, this book provides a comprehensive discussion of the physical approaches and practical considerations for the laboratory and marketplace"--Provided by publisher.
Preface xiii
About the Author xv
Chapter 1 Percutaneous Absorption and Enhancement Strategies
1(26)
1.1 Introduction
1(4)
1.2 Structure and Enzymatic Activity of the Skin
5(3)
1.2.1 Skin Structure
5(2)
1.2.1.1 Hair Follicles in the Skin
7(1)
1.2.2 Enzymatic Activity of the Skin
8(1)
1.3 Percutaneous Absorption
8(2)
1.3.1 Mechanisms of Percutaneous Absorption
8(1)
1.3.2 Theoretical Basis of Percutaneous Absorption
9(1)
1.4 Passive Permeation Enhancement Strategies
10(5)
1.4.1 Chemical Penetration Enhancers
10(2)
1.4.2 Prodrugs
12(1)
1.4.3 Nanocarriers for Intradermal or Transdermal Delivery
13(1)
1.4.4 Microemulsions
13(1)
1.4.5 Liposomes
13(2)
1.4.6 Cyclodextrins
15(1)
1.5 Active Enhancement Strategies for Percutaneous Absorption
15(3)
1.5.1 Microporation
16(1)
1.5.2 Iontophoresis
16(1)
1.5.3 Sonophoresis
17(1)
1.5.4 Microdermabrasion
17(1)
1.6 Applications in Veterinary Medicine
18(9)
References
19(8)
Chapter 2 Experimental Methods and Tools for Transdermal Delivery by Physical Enhancement Methods
27(26)
2.1 Introduction
27(1)
2.2 Considerations in Selecting the Skin Model
27(6)
2.2.1 Animal Models for Transdermal Delivery
27(2)
2.2.2 Use of Human Skin
29(1)
2.2.3 Isolated Perfused Porcine Skin Flap Model
30(1)
2.2.4 Artificial Skin Equivalents
31(1)
2.2.5 Skin Treatment
31(1)
2.2.6 Use of Synthetic Membranes
32(1)
2.3 Transdermal Studies
33(5)
2.3.1 Diffusion Cells: Vertical Configuration
33(2)
2.3.2 Diffusion Cells: Horizontal Configuration
35(1)
2.3.3 Devices Used with Skin Enhancement Techniques
35(1)
2.3.4 Typical Experimental Setup
36(1)
2.3.5 Variability of Percutaneous Absorption
37(1)
2.4 Analysis
38(3)
2.4.1 Tape Stripping
39(1)
2.4.2 Microdialysis
40(1)
2.5 Instrumental Tools Used to Characterize Transdermal Transport
41(12)
References
44(9)
Chapter 3 Microporation-Mediated Transdermal Drug Delivery
53(28)
3.1 Introduction
53(1)
3.2 Skin Microporation by Microneedles
53(13)
3.2.1 Potential Advantages of a Microneedle Patch
53(1)
3.2.2 Fabrication of Microneedles
54(2)
3.2.3 Mechanisms of Delivery and Type of Microneedles
56(1)
3.2.3.1 Solid Microneedles
56(3)
3.2.3.2 Hollow Microneedles
59(2)
3.2.4 Factors Influencing Microneedle Insertion
61(1)
3.2.4.1 Insertion Kinetics
61(1)
3.2.4.2 Microneedle Length and Density
62(1)
3.2.4.3 Microneedle Geometry
63(1)
3.2.4.4 Depth of Insertion and Pain
63(1)
3.2.5 Pore Closure and Safety Following Microporation
64(1)
3.2.6 Delivery of Particulates through Hair Follicles and through Microporated Skin
65(1)
3.3 Skin Microporation by Other Approaches
66(4)
3.3.1 Thermal Ablation
66(1)
3.3.2 Laser Microporation
67(1)
3.3.3 Radio-Frequency Ablation
68(2)
3.3.4 Other Means of Skin Microporation
70(1)
3.4 Combination Approaches
70(1)
3.5 Applications of Microporation
71(10)
3.5.1 Delivery of Small Drug Molecules
71(1)
3.5.2 Photodynamic Therapy
71(1)
3.5.3 Delivery of Lipophilic Drugs
72(1)
3.5.4 Delivery of Macromolecules
72(1)
3.5.5 Diagnostic and Other Applications
72(1)
References
73(8)
Chapter 4 Iontophoretic Intradermal and Transdermal Drug Delivery
81(50)
4.1 Introduction
81(1)
4.1.1 Historical Origin of Iontophoresis
81(1)
4.2 Electrical Properties of Skin
82(1)
4.3 Pathways of Iontophoretic Drug Delivery
83(2)
4.4 Theoretical Basis of Iontophoresis
85(2)
4.5 Factors Affecting Iontophoretic Delivery
87(6)
4.5.1 Electric Current
87(2)
4.5.2 Modality of Current
89(1)
4.5.3 Physicochemical Properties of the Drug
90(2)
4.5.4 Formulation Factors
92(1)
4.5.5 Biological Factors
93(1)
4.6 pH Control in Iontophoresis Research
93(4)
4.6.1 Selection of Electrode Material
93(1)
4.6.2 Silver/Silver Chloride Electrodes
94(1)
4.6.3 Preparation and Care of Silver/Silver Chloride Electrodes
95(1)
4.6.4 Alternative Methods for pH Control
96(1)
4.7 Electroosmotic Flow
97(2)
4.7.1 Theoretical Treatment of Electroosmotic Flow
99(1)
4.8 Reverse Iontophoresis
99(2)
4.9 Treatment Protocols and Formulations
101(1)
4.10 Combined Use of Iontophoresis and Other Enhancement Techniques
102(1)
4.11 Applications of Iontophoresis
102(4)
4.11.1 Iontophoretic Delivery to the Nail
102(1)
4.11.2 Nicotine
103(1)
4.11.3 Synthetic Narcotics: Sufentanil
104(1)
4.11.4 Iontophoretic Delivery of Dopamine Agonists
104(1)
4.11.5 Miscellaneous
105(1)
4.11.6 Alternate Applications for Iontophoresis
106(1)
4.12 Clinical Applications of Iontophoresis for Intradermal Delivery
106(25)
4.12.1 Delivery of Dexamethasone
107(2)
4.12.2 Delivery of Other Steroids
109(1)
4.12.3 Treatment of Hyperhidrosis
109(1)
4.12.4 Diagnosis of Cystic Fibrosis
110(2)
4.12.5 Iontophoresis of Histamine and Antihistamines
112(1)
4.12.6 Delivery of Antiviral Agents
112(1)
4.12.7 Delivery of Antibiotic/Anti-Infective Agents
113(1)
4.12.8 Other Applications of Iontophoresis
113(1)
References
114(17)
Chapter 5 Skin Electroporation and Its Applications
131(22)
5.1 Introduction
131(2)
5.2 Electropermeabilization of the Skin
133(2)
5.3 Electroporation Equipment
135(1)
5.4 Factors Affecting Delivery by Electroporation
136(3)
5.5 Skin Toxicology of Electroporation
139(2)
5.6 Electroporation for Cancer Chemotherapy
141(2)
5.7 Delivery of Drugs by Electroporation
143(10)
5.7.1 Luteinizing Hormone-Releasing Hormone
145(1)
5.7.2 Heparin
145(1)
5.7.3 Doxepin
146(1)
References
146(7)
Chapter 6 Sonophoresis for Intradermal and Transdermal Drug Delivery
153(18)
6.1 Introduction
153(1)
6.2 Factors Affecting Sonophoresis
153(2)
6.3 Mechanisms of Ultrasound-Mediated Transdermal Delivery
155(1)
6.4 Delivery of Lipophilic Drugs
156(1)
6.5 Sonophoresis Devices
157(1)
6.6 Skin Irritation and Electrical Properties
158(1)
6.7 Transdermal Delivery Application of Sonophoresis
159(5)
6.7.1 Delivery of Small Molecules
160(1)
6.7.2 Delivery of Insulin
161(1)
6.7.3 Delivery of Other Macromolecules
161(2)
6.7.4 Clinical Studies
163(1)
6.8 Combination Approaches
164(7)
References
165(6)
Chapter 7 How to Go about Selecting the Optimal Enhancement Method for Transdermal Delivery of a Specific Drug Molecule: Case Studies
171(24)
7.1 Introduction
171(1)
7.2 Technology Comparison and Limitations
172(1)
7.3 Passive versus Active Patches for Transdermal and Intradermal Delivery
173(1)
7.4 Case Studies
174(21)
7.4.1 Moderately Lipophilic
174(1)
7.4.1.1 Lidocaine
175(1)
7.4.2 Highly Lipophilic
176(1)
7.4.2.1 Buprenorphine
176(1)
7.4.2.2 Fentanyl
176(1)
7.4.3 Hydrophilic Small Molecules
177(1)
7.4.3.1 Acyclovir
177(1)
7.4.3.2 Methotrexate
178(1)
7.4.4 Hydrophilic Macromolecules
179(1)
7.4.4.1 Insulin
180(3)
7.4.5 Therapeutic Categories
183(1)
7.4.5.1 Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)
183(2)
7.4.5.2 Antihypertensive/Cardiovascular Agents
185(2)
References
187(8)
Chapter 8 Transdermal Delivery of Peptides and Proteins
195(24)
8.1 Introduction
195(2)
8.2 Structural Considerations of Polypeptides Relevant to Transdermal Delivery
197(1)
8.3 Protease Inhibitors and Permeation Enhancers for Transdermal Protein Delivery
198(2)
8.3.1 Proteolytic Activity of Skin
198(1)
8.3.2 Protease Inhibitors
199(1)
8.3.3 Permeation Enhancers
199(1)
8.4 Iontophoretic Delivery of Peptides
200(2)
8.5 Transdermal Delivery of Peptides and Proteins: Examples
202(17)
8.5.1 Amino Acids
202(1)
8.5.2 Small Peptides
203(1)
8.5.3 Vasopressin and Analogs
204(2)
8.5.4 Luteinizing Hormone-Releasing Hormones and Analogs
206(2)
8.5.5 Calcitonin
208(3)
8.5.6 Large Proteins
211(1)
8.5.7 Other Peptide/Protein Candidates
211(1)
References
212(7)
Chapter 9 Transcutaneous Immunization via Physical Methods
219(24)
9.1 Introduction
219(1)
9.2 Immunology of the Skin
220(1)
9.3 Transcutaneous Immunization by Passive Approaches
221(1)
9.4 Microneedle-Based Intradermal Injection
221(2)
9.5 Microneedle-Mediated Vaccination
223(4)
9.6 Jet Injectors
227(1)
9.6.1 Particle-Mediated Immunization
227(1)
9.7 Delivery of DNA Vaccines, Genes, and Oligonucleotides
228(15)
9.7.1 DNA Vaccination by Electroporation
229(1)
9.7.2 Delivery of Genes
230(1)
9.7.3 Delivery of Oligonucleotides
231(2)
References
233(10)
Chapter 10 Commercial Development of Devices and Products for Transdermal Physical Enhancement Technologies
243(40)
10.1 Introduction
243(1)
10.2 What Can Be Learned from the Passive Patches on the Market?
244(1)
10.3 Safety Issues and Effect of Heat
245(3)
10.4 Skin Irritation Testing
248(3)
10.5 Commercial Development of Microporation Devices
251(8)
10.5.1 Challenges for Commercial Development of a Microneedle-Based Patch
251(2)
10.5.2 Microneedle-Based Transdermal Products in Development
253(1)
10.5.2.1 Marketed Products
253(2)
10.5.2.2 Products in Clinical Development
255(2)
10.5.2.3 Products in Preclinical Development
257(2)
10.6 Commercial Development of Iontophoretic Devices
259(8)
10.6.1 Introduction
259(2)
10.6.2 Iontophoresis Devices
261(3)
10.6.3 Electrode Design
264(1)
10.6.4 Iontophoresis-Based Transdermal Products on Market or in Clinical Development
265(2)
10.7 Formulation Considerations
267(2)
10.8 Patch Design and Regulatory Issues
269(4)
10.9 Dose and Bioavailability
273(10)
References
274(9)
Index 283
Dr. Ajay K. Banga is Professor and Department Chair in the Department of Pharmaceutical Sciences at the College of Pharmacy and Health Sciences, Mercer University, Atlanta, Georgia. He also holds an Endowed Chair in transdermal delivery systems. His research expertise is in non-traditional approaches for transdermal drug delivery, especially for water soluble drugs including small conventional molecules and macromolecules. Dr. Banga has a Ph.D. in pharmaceutics from Rutgers University, New Jersey.





Dr. Banga has over 220 publications and scientific abstracts to his credit. His laboratory is funded by several start up and leading pharmaceutical companies. Dr. Banga currently serves on the Editorial Board of 7 journals, as Associate Editor for one journal, and has served as the Editor-in-Chief (2002-07) for a drug delivery journal. He has written two books in the areas of delivery of proteins and transdermal delivery. He has served on over 30 thesis/dissertation advisory committees and as a referee for over 28 journals. He is a Fellow of the American Association of Pharmaceutical Scientists.