|
1 Electron Transport in Solids |
|
|
1 | (8) |
|
1.1 Electron-Beam Interactions with Solids |
|
|
1 | (2) |
|
1.2 Electron Energy-Loss Peaks |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.4 Secondary Electron Peak |
|
|
5 | (1) |
|
1.5 Characterization of Materials |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (2) |
|
2 Cross-Sections: Basic Aspects |
|
|
9 | (6) |
|
2.1 Cross-Section and Probability of Scattering |
|
|
10 | (1) |
|
2.2 Stopping Power and Inelastic Mean Free Path |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (28) |
|
|
16 | (6) |
|
3.1.1 Mott Cross-Section Versus Screened Rutherford Cross-Section |
|
|
17 | (5) |
|
3.2 Quasi-Elastic Scattering |
|
|
22 | (1) |
|
3.2.1 Electron-Phonon Interaction |
|
|
22 | (1) |
|
|
23 | (12) |
|
3.3.1 Stopping: Bethe-Bloch Formula |
|
|
24 | (1) |
|
3.3.2 Stopping: Semi-empiric Formulas |
|
|
24 | (1) |
|
|
25 | (4) |
|
3.3.4 Sum of Drude Functions |
|
|
29 | (5) |
|
|
34 | (1) |
|
3.4 Inelastic Mean Free Path |
|
|
35 | (1) |
|
|
35 | (4) |
|
|
39 | (4) |
|
|
40 | (3) |
|
|
43 | (6) |
|
4.1 Generating Pseudo-Random Numbers |
|
|
43 | (1) |
|
4.2 Testing Pseudo-Random Number Generators |
|
|
44 | (1) |
|
4.3 Pseudo-Random Numbers Distributed According to a Given Probability Density |
|
|
44 | (1) |
|
4.4 Pseudo-Random Numbers Uniformly Distributed in the Interval [ a, b] |
|
|
45 | (1) |
|
4.5 Pseudo-Random Numbers Distributed According to the Poisson Density of Probability |
|
|
45 | (1) |
|
4.6 Pseudo-Random Numbers Distributed According to the Gauss Density of Probability |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
47 | (2) |
|
|
49 | (16) |
|
5.1 The Continuous-Slowing-Down Approximation |
|
|
50 | (3) |
|
|
50 | (1) |
|
5.1.2 Interface Between Over-Layer and Substrate |
|
|
50 | (1) |
|
5.1.3 The Polar Scattering Angle |
|
|
51 | (1) |
|
5.1.4 Direction of the Electron After the Last Deflection |
|
|
51 | (1) |
|
|
52 | (1) |
|
5.1.6 End of the Trajectory and Number of Trajectories |
|
|
53 | (1) |
|
5.2 The Energy-Straggling Strategy |
|
|
53 | (9) |
|
|
53 | (1) |
|
5.2.2 Elastic and Inelastic Scattering |
|
|
54 | (1) |
|
5.2.3 Electron-Electron Collisions: Scattering Angle |
|
|
55 | (2) |
|
5.2.4 Electron-Phonon Collisions: Scattering Angle |
|
|
57 | (1) |
|
5.2.5 Direction of the Electron After the Last Deflection |
|
|
57 | (1) |
|
5.2.6 Transmission Coefficient |
|
|
58 | (2) |
|
5.2.7 Inelastic Scattering Linkage to the Distance from the Surface |
|
|
60 | (2) |
|
5.2.8 End of the Trajectory and Number of Trajectories |
|
|
62 | (1) |
|
|
62 | (3) |
|
|
62 | (3) |
|
6 Backscattering Coefficient |
|
|
65 | (16) |
|
6.1 Electrons Backscattered from Bulk Targets |
|
|
65 | (3) |
|
6.1.1 The Backscattering Coefficient of C and Al Calculated by Using the Dielectric Theory (Ashley Stopping Power) |
|
|
66 | (1) |
|
6.1.2 The Backscattering Coefficient of Si, Cu, and Au Calculated by Using the Dielectric Theory (Tanuma et al. Stopping Power) |
|
|
66 | (2) |
|
6.2 Electrons Backscattered from One Layer Deposited on Semi-infinite Substrates |
|
|
68 | (3) |
|
6.2.1 Carbon Overlayers (Ashley Stopping Power) |
|
|
69 | (1) |
|
6.2.2 Gold Overlayers (Kanaya and Okayama Stopping Power) |
|
|
70 | (1) |
|
6.3 Electrons Backscattered from Two Layers Deposited on Semi-infinite Substrates |
|
|
71 | (4) |
|
6.4 A Comparative Study of Electron and Positron Backscattering Coefficients and Depth Distributions |
|
|
75 | (3) |
|
|
78 | (3) |
|
|
78 | (3) |
|
7 Secondary Electron Yield |
|
|
81 | (12) |
|
7.1 Secondary Electron Emission |
|
|
82 | (1) |
|
7.2 Monte Carlo Approaches to the Study of Secondary Electron Emission |
|
|
82 | (1) |
|
7.3 Specific MC Methodologies for SE Studies |
|
|
83 | (2) |
|
7.3.1 Continuous-Slowing-Down Approximation (CSDA Scheme) |
|
|
83 | (1) |
|
7.3.2 Energy-Straggling (ES Scheme) |
|
|
84 | (1) |
|
7.4 Secondary Electron Yield: PMMA and Al2O3 |
|
|
85 | (6) |
|
7.4.1 Secondary Electron Emission Yield as a Function of the Energy |
|
|
85 | (1) |
|
7.4.2 Comparison Between ES Scheme and Experiment |
|
|
85 | (1) |
|
7.4.3 Comparison Between CSDA and ES Schemes |
|
|
86 | (2) |
|
7.4.4 Comparison Between CSDA Scheme and Experiment |
|
|
88 | (1) |
|
|
89 | (2) |
|
|
91 | (2) |
|
|
91 | (2) |
|
8 Electron Energy Distributions |
|
|
93 | (14) |
|
8.1 Monte Carlo Simulation of the Spectrum |
|
|
93 | (2) |
|
8.2 Plasmon Losses and Electron Energy Loss Spectroscopy |
|
|
95 | (2) |
|
8.2.1 Plasmon Losses in Graphite |
|
|
95 | (1) |
|
8.2.2 Plasmon Losses in Silicon Dioxide |
|
|
96 | (1) |
|
8.3 Energy Losses of Auger Electrons |
|
|
97 | (2) |
|
8.4 Elastic Peak Electron Spectroscopy |
|
|
99 | (1) |
|
8.5 Secondary Electron Spectrum |
|
|
100 | (4) |
|
8.5.1 Initial Polar and Azimuth Angle of the SEs |
|
|
101 | (1) |
|
8.5.2 Comparison with Theoretical and Experimental Data |
|
|
101 | (3) |
|
|
104 | (3) |
|
|
104 | (3) |
|
|
107 | (10) |
|
9.1 Linewidth Measurement in Critical Dimension SEM |
|
|
107 | (4) |
|
9.1.1 Nanometrology and Linewidth Measurement in CD SEM |
|
|
107 | (1) |
|
9.1.2 Lateral and Depth Distributions |
|
|
108 | (1) |
|
9.1.3 Secondary Electron Yield as a Function of the Angle of Incidence |
|
|
109 | (1) |
|
9.1.4 Linescan of a Silicon Step |
|
|
110 | (1) |
|
9.1.5 Linescan of PMMA Lines on a Silicon Substrate |
|
|
111 | (1) |
|
9.2 Application to Energy Selective Scanning Electron Microscopy |
|
|
111 | (3) |
|
|
112 | (1) |
|
9.2.2 Energy Selective Scanning Electron Microscopy |
|
|
113 | (1) |
|
|
114 | (3) |
|
|
115 | (2) |
|
10 Appendix A: Mott Theory |
|
|
117 | (6) |
|
10.1 Relativistic Partial Wave Expansion Method |
|
|
117 | (2) |
|
10.2 Analytic Approximation of the Mott Cross-Section |
|
|
119 | (1) |
|
10.3 The Atomic Potential |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
10.6 Positron Differential Elastic Scattering Cross-Section |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
11 Appendix B: Frohlich Theory |
|
|
123 | (12) |
|
11.1 Electrons in Lattice Fields: Interaction Hamiltonian |
|
|
123 | (3) |
|
11.2 Electron-Phonon Scattering Cross-Section |
|
|
126 | (7) |
|
|
133 | (2) |
|
|
133 | (2) |
|
12 Appendix C: Ritchie Theory |
|
|
135 | (6) |
|
12.1 Energy Loss and Dielectric Function |
|
|
135 | (3) |
|
12.2 Homogeneous and Isotropic Solids |
|
|
138 | (1) |
|
|
139 | (2) |
|
|
140 | (1) |
|
13 Appendix D: Chen and Kwei and Li et al. Theory |
|
|
141 | (4) |
|
13.1 Outgoing and Incoming Electrons |
|
|
141 | (1) |
|
13.2 Probability of Inelastic Scattering |
|
|
142 | (1) |
|
|
143 | (2) |
|
|
143 | (2) |
Index |
|
145 | |