Atjaunināt sīkdatņu piekrišanu

E-grāmata: Transport and Interactions of Chlorides in Cement-based Materials

, (Hunan University, China), , (Central South University, Hunan, China)
  • Formāts: 311 pages
  • Izdošanas datums: 26-Jul-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9780429881978
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 56,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 311 pages
  • Izdošanas datums: 26-Jul-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9780429881978
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Chloride-induced corrosion is the most important durability issue of reinforced concrete structures, and the prediction and prevention of chloride-induced corrosion has attracted considerable interest all over the world.

Given that chloride penetrates through the concrete cover, the issues concerning its transport are crucial. These include testing methods, prediction, and the prevention of ingress. During the transport process, physical and chemical interaction occurs between chloride and cement hydrates, which in turn affects the further transport, so the transport of chloride and these interactions are closely related, and underpin our understanding of chloride-induced corrosion in RC structures.

This book provides in-depth discussion of chloride transport and its interaction in cement-based materials, and reviews and summarizes the state of the art. The mechanisms and testing methods for chloride transport, chemical interactions of chloride with cement hydrates, chloride binding isotherms, measurement of penetration depths, factors affecting chloride transport, and modelling of chloride transport are discussed in detail. This book serves as a reference for researchers or engineer, and a textbook for graduate students.

Preface xiii
Authors xv
1 Introduction
1(18)
1.1 Chloride-Related Corrosion
1(3)
1.2 Chloride Transport in Cement-Based Materials
4(3)
1.3 Interaction of Chloride with Hydration Products of Cement
7(3)
1.4 Organization of This Book
10(9)
References
12(7)
2 Mechanisms of Chloride Transport in Cement-Based Materials
19(16)
2.1 Introduction
19(1)
2.2 Transport of Chloride in Cement-Based Materials
20(12)
2.2.1 Electrical Migration
23(3)
2.2.2 Diffusion
26(3)
2.2.3 Hydrostatic Advection
29(1)
2.2.4 Thermal Migration
29(1)
2.2.5 Capillary Effect
30(1)
2.2.6 Coupled Effects
31(1)
2.3 Summary
32(3)
References
33(2)
3 Chemical and Physical Interactions between Chlorides and Cement Hydrates
35(42)
3.1 Introduction
35(1)
3.2 The Formation of Eriedel's Salt
36(6)
3.2.1 Reaction between Chloride Ions and Aluminum Phase
37(1)
3.2.2 Reaction between Chloride Ions and A Fm Phase
38(4)
3.3 The Stability of Friedel's Salt
42(3)
3.4 Physical Adsorption of Chloride
45(2)
3.4.1 Chloride Adsorption by C-S-H Gel
45(2)
3.4.2 Chloride Adsorption by AFt Phase
47(1)
3.5 Chloride Concentrate Phenomenon
47(20)
3.5.1 Formation of EDL within Cement-Based Materials
51(3)
3.5.2 Zeta Potential
54(5)
3.5.3 Chloride Distribution within EDL
59(3)
3.5.4 Variations of EDL during Pore Solution Expression
62(5)
3.6 Chloride Binding with Other Compounds
67(2)
3.7 Summary
69(8)
References
70(7)
4 Chloride Binding and Its Effects on Characteristics of Cement-Based Materials
77(42)
4.1 Introduction
77(1)
4.2 Chloride Binding of Cement-Based Materials
78(14)
4.2.1 Chloride Concentration
78(2)
4.2.2 Cement Composition
80(1)
4.2.2.1 C3A and C4AF
80(2)
4.2.2.2 C3S and C2S
82(1)
4.2.2.3 SO3 Content
82(1)
4.2.3 Supplementary Cementitious Materials
83(1)
4.2.3.1 Fly Ash
83(1)
4.2.3.2 Ground Granulated Blast Furnace Slag (GGBFS)
83(2)
4.2.3.3 Silica Fume
85(2)
4.2.4 Hydroxyl Ion Concentration
87(1)
4.2.5 Cation of Chloride Salt
87(1)
4.2.6 Temperature
88(1)
4.2.7 Carbonation
89(1)
4.2.8 Sulfate Ion
89(1)
4.2.9 Electrical Field
90(2)
4.3 Chloride Binding Isotherm
92(3)
4.3.1 Linear Binding Isotherm
92(2)
4.3.2 Langmuir Isotherm
94(1)
4.3.3 Freundlich Binding Isotherm
94(1)
4.3.4 Brunauer, Emmett, Teller (BET) Isotherm
95(1)
4.4 Experimental Determination of Binding Isotherm
95(3)
4.4.1 Equilibrium Method
96(1)
4.4.2 Pore Solution Expression
96(1)
4.4.3 Diffusion Cell Method
97(1)
4.4.4 Migration Test Method
98(1)
4.5 Determination of Physically Absorbed Chloride Distribution in EDL
98(6)
4.6 Effect of Chloride Binding on Microstructure
104(4)
4.6.1 Effects of Chloride Binding on Hydration Products
104(1)
4.6.2 Effects of Chloride Binding on Pore Structure
105(3)
4.7 Summary
108(11)
References
111(8)
5 Testing Methods for Chlorides Transport in Cement-Based Materials
119(58)
5.1 Introduction
119(1)
5.2 Some Chloride-Related Tests
120(9)
5.2.1 Chloride Profile
120(1)
5.2.2 Chloride Analysis
121(3)
5.2.2.1 Determination of Total Chloride
124(2)
5.2.2.2 Determination of Water-Soluble Chloride
126(1)
5.2.2.3 Relationship between Water-Soluble and Total Chlorides
127(2)
5.3 Testing Methods for Chloride Transport in Concrete
129(28)
5.3.1 Brief Overview of Testing Methods
129(3)
5.3.2 Fick's First Law
132(2)
5.3.3 Fick's Second Law
134(1)
5.3.3.1 NT Build 443
134(1)
5.3.3.2 Short-Term Immersion Test
135(1)
5.3.4 Nernst-Planck Equation
136(1)
5.3.4.1 NT Build 355
137(2)
5.3.4.2 Upstream Method (Trues Method)
139(1)
5.3.4.3 NT Build 492
140(3)
5.3.4.4 Breakthrough Time Method
143(2)
5.3.4.5 Andrade and Castellote's Method
145(2)
5.3.4.6 Samsons Method
147(1)
5.3.4.7 Friedmanns Method
148(2)
5.3.5 Nernst-Einstein Equation
150(1)
5.3.6 Formation Factor
151(1)
5.3.7 Other Methods
152(1)
5.3.7.1 ASTM C 1202/AASHT O T227 Test Method
152(2)
5.3.7.2 Salt Bonding Test (AASHTO T 259)
154(1)
5.3.7.3 Water Pressure Method
155(1)
5.3.7.4 AC Impendence Method
156(1)
5.4 Standards on Testing Methods for Chloride Transport
157(2)
5.5 Relationship between Test Results Obtained from Different Test Methods
159(12)
5.5.1 Non-Steady-State Migration and Diffusion Coefficients
159(5)
5.5.2 Steady-State and Non-Steady-State Migration Coefficients
164(4)
5.5.3 ASTM C1201 (or Initial Current) and Migration Coefficients
168(1)
5.5.4 NT Build 443 Results Obtained from Free and Total Chlorides
169(2)
5.6 Summary
171(6)
References
172(5)
6 Determination of Chloride Penetration in Cement-Based Materials Using AgNO3-Based Colorimetric Methods
177(30)
6.1 Introduction
177(1)
6.2 Determination of Chloride Ingress Depths
178(7)
6.2.1 AgNO3 + Fluorescein Method
178(1)
6.2.2 AgNO3+ K2CrO4 Method
179(1)
6.2.3 AgNO3 Method
179(2)
6.2.4 Comparison of the Three Methods
181(1)
6.2.5 Measurement of Chloride Penetration Depth
182(3)
6.3 Chloride Concentration at Color Change Boundary
185(8)
6.3.1 Parameters of Colorimetric Reactions
185(2)
6.3.2 Sampling Methods
187(1)
6.3.3 Methods for Free Chloride Measurement
187(1)
6.3.3.1 Fore Solution Expression Method
188(1)
6.3.3.2 Water Extraction Method
189(1)
6.3.4 Spraying of AgN03 Solution and Representative Value of Cd
190(1)
6.3.4.1 Spraying Method and Amount of AgN03 Solution
190(1)
6.3.4.2 Representative Value of Cd
191(2)
6.4 Application of Colorimetric Method to Determine Chloride Diffusion/Migration Coefficient
193(6)
6.4.1 Measurement of Non-Steady-State Chloride Diffusion
193(1)
6.4.1.1 Measurement of Chloride Penetration Kinetics
193(1)
6.4.1.2 Measurement of Apparent Chloride Diffusion Coefficient
194(1)
6.4.2 Measurement of Non-Steady-State Electrical Migration
195(2)
6.4.2.1 Effect of Cd on Dnssm Error
197(1)
6.4.2.2 Error of Dnssm Based on Controlled Amount of Sprayed AgN03 Solution
198(1)
6.4.3 Evaluation for Corrosion Risk of Steel in Concrete
199(1)
6.5 Chloride Ion Types in Cd and Absence of Color Change Boundary
199(1)
6.6 Depth Dependence of Chloride Diffusion Coefficient Based on AgN03 Colorimetric Method
200(1)
6.7 Summary
200(7)
References
202(5)
7 Factors Affecting Chlorides Transport in Cement-Based Materials
207(38)
7.1 Introduction
207(1)
7.2 Effect of Interaction between Ions on Chloride Transport
208(8)
7.2.1 Model Describing Multi-Ion Transport
208(2)
7.2.2 Theory on Interaction between Ions
210(1)
7.2.2.1 The Chemical Potential between Ions
210(2)
7.2.2.2 Lagging Motion of the Cations
212(1)
7.2.2.3 Interaction between the EDL and Ionic Clouds
213(1)
7.2.3 Concentration Dependence of Chloride Transport
213(2)
7.2.4 Effect of Species on Chloride Transport
215(1)
7.3 Effect of Micro-Structure on Chloride Transport
216(7)
7.3.1 Effect of Pore Structure on Chloride Transport
216(1)
7.3.1.1 Relation between Porosity and Chloride Transport
216(2)
7.3.1.2 Relation between Pore Diameter and Chloride Transport
218(1)
7.3.2 Effect of ITZ on Chloride Transport
219(1)
7.3.1 Transport Properties of Chloride in ITZ
220(1)
7.3.2.2 Effect of Aggregate Volume on Chloride Transport
220(3)
7.3.2.3 Effect of Aggregate Shape on Chloride Transport
223(1)
7.3.3 Coupling Effect of Pore Structure and ITZ on Chloride Transport
223(1)
7.4 Effect of Chloride Binding on Chloride Transport
223(7)
7.4.1 Describing Effect of Chloride Binding on Chloride Transport by Binding Isotherm
226(3)
7.4.2 Transportable Chloride in Cement-Based Materials
229(1)
7.5 Effect of Cracking on Chloride Transport
230(6)
7.5.1 Cracking Formation Method in Laboratory Studies
230(1)
7.5.2 Characterization of Cracking
231(1)
7.5.3 Effect of Cracking on Chloride Transport
232(1)
7.5.3.1 Effect of Cracking Width
232(2)
7.5.3.2 Effect of Cracking Depth
234(1)
7.5.3.3 Effect of Cracking Tortuosity, Orientation, and Density
234(1)
7.5.4 Cracking Effect under Different Loading Level
235(1)
7.6 Summary
236(9)
Bibliography
237(8)
8 Simulation and Modeling of Chloride Transport in Cement-Based Materials
245(48)
8.1 Introduction
245(2)
8.2 Modeling Chloride Transport in Saturated Concrete
247(30)
8.2.1 Empirical Model (Eickian Model)
249(6)
8.2.2 Physical Models
255(19)
8.2.3 Probabilistic Model
274(3)
8.3 Modeling Chloride Transport in Unsaturated Concrete
277(5)
8.3.1 Deterministic Model
277(2)
8.3.2 Probabilistic Model
279(3)
8.4 Chloride-Related Durability Codes
282(3)
8.4.1 ACI Standards
282(1)
8.4.2 Enrocode
282(2)
8.4.3 Chinese Code
284(1)
8.4.4 Japanese Code
284(1)
8.5 Summary
285(8)
References
288(5)
Index 293
Caijun Shi is a chair professor in the College of Civil Engineering at Hunan University, China. He is author of Alkali-Activated Cements and Concretes also published by CRC Press.

Qiang Yuan is associate professor at Central South University, China.

Fuqiang He is associate professor at Xiamen University of Technology, China.

Xiang Hu is a PhD student at Hunan University.