Atjaunināt sīkdatņu piekrišanu

E-grāmata: Transport in Nanostructures

(State University of New York, Buffalo), (Arizona State University), (Arizona State University)
  • Formāts: PDF+DRM
  • Izdošanas datums: 20-Aug-2009
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511629815
  • Formāts - PDF+DRM
  • Cena: 107,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 20-Aug-2009
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511629815

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Much-needed update on experimental research into mesoscopic devices for graduate students and researchers in mesoscopic physics, nanoelectronics, and semiconductor nanostructures.

The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behavior. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Recenzijas

Reviews from the first edition 'The authors have produced an excellent summary of the state-of-the-art, which is highly recommended to those working in this fascinating area.' J. J. Harris, Contemporary Physics ' this book is currently the most accurate review on mesoscopic semiconductors. The book can serve as a good reference that contains all the basics, not only for students but also for rusty researchers.' Leo Kouwenhoven, Science 'This second edition is one of the most important works available on nanoscale physics and devices. It is a must for any student or researcher who works in the area.' Daniela Dragoman, Optics and Photonics News

Papildus informācija

Much-needed update on experimental research into mesoscopic devices for graduate students and researchers in mesoscopic physics, nanoelectronics, and semiconductor nanostructures.
Preface vii
Acknowledgements x
Introduction
1(27)
Nanostructures: the impact
2(7)
Mesoscopic observables in nanostructures
9(8)
Space and time scales
17(2)
Nanostructures and nanodevices
19(4)
An introduction to the subsequent chapters
23(2)
What is omitted
25(3)
Quantum confined systems
28(88)
Nanostructure materials
29(6)
Quantization in heterojunction systems
35(17)
Lateral confinement: quantum wires and quantum dots
52(6)
Electronic states in quantum wires and dots
58(8)
Magnetic field effects in quantum confined systems
66(10)
Screening and collective excitations in low-dimensional systems
76(7)
Homogeneous transport in low-dimensional systems
83(33)
Transmission in nanostructures
116(77)
Tunneling in planar barrier structures
117(6)
Current in resonant tunneling diodes
123(13)
Landauer formula
136(4)
The multi-channel case
140(15)
Transport in quantum waveguide structures
155(38)
The quantum Hall effects
193(55)
The integer quantum Hall effect in two-dimensional electron systems
194(16)
Edge-state propagation in nanostructures
210(10)
The fractional quantum Hall effect
220(15)
The many-body picture
235(13)
Ballistic transport in quantum wires
248(51)
Conductance quantization in quantum point contacts
249(22)
Non-integer conductance quantization in quantum point contacts
271(19)
Some ballistic device concepts
290(9)
Quantum dots
299(114)
Fundamentals of single-electron tunneling
300(38)
Single-electron tunneling in semiconductor quantum dots
338(23)
Coupled quantum dots as artificial molecules
361(27)
Quantum interference due to spatial wave function coherence in quantum dots
388(25)
Weakly disordered systems
413(78)
Disordered semiconductors
414(13)
Conductivity
427(12)
Weak localization
439(20)
Universal conductance fluctuations
459(8)
Green's functions in disordered materials
467(24)
Temperature decay of fluctuations
491(72)
Temperature decay of coherence
493(10)
The role of temperature on the fluctuations
503(8)
Electron-electron interaction effects
511(43)
Conductivity
554(9)
Nonequilibrium transport and nanodevices
563(90)
Nonequilibrium transport in mesoscopic structures
566(27)
Semiconductor nanodevices in the real world
593(17)
Quantum simulations via the scattering matrix
610(10)
Real-time Green's functions
620(33)
Index 653
David Ferry is Regents' Professor in the Department of Electrical Engineering at Arizona State University. His areas of research include nanoelectronic devices, quantum transport, and nonequilibrium transport. He is a Fellow of the American Physical Society, the Institute of Electrical and Electronics Engineers, and of the Institute of Physics (UK). Stephen M. Goodnick is Director of the Arizona Institute for Nanoelectronics and Professor of Electrical Engineering at Arizona State University, where he researches transport in semiconductor devices, computational electronics, quantum and nanostructured devices and device technology. Jonathan Bird is a Professor in the Department of Electrical Engineering at the University at Buffalo. His research interests lie in the area of nanoelectronics. He is the co-author of more than two hundred peer-reviewed publications, and of undergraduate and graduate textbooks.