Atjaunināt sīkdatņu piekrišanu

Transport Properties of Molecular Junctions 2013 ed. [Hardback]

  • Formāts: Hardback, 338 pages, height x width: 235x155 mm, weight: 6506 g, 95 Illustrations, color; 9 Illustrations, black and white; XIII, 338 p. 104 illus., 95 illus. in color., 1 Hardback
  • Sērija : Springer Tracts in Modern Physics 254
  • Izdošanas datums: 07-Sep-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461480108
  • ISBN-13: 9781461480105
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 338 pages, height x width: 235x155 mm, weight: 6506 g, 95 Illustrations, color; 9 Illustrations, black and white; XIII, 338 p. 104 illus., 95 illus. in color., 1 Hardback
  • Sērija : Springer Tracts in Modern Physics 254
  • Izdošanas datums: 07-Sep-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461480108
  • ISBN-13: 9781461480105
Citas grāmatas par šo tēmu:
A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts--a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers and professionals.

This book offers a comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions. Presents common theoretical methods and reviews the basics of density-functional theory.
1 General Description 1(38)
1.1 Conduction and Electron Current Through a Single Molecule
1(7)
1.2 Gating and Electric Potential on the Bridge
8(4)
1.3 Electron-Electron Interactions: Coulomb Blockade
12(4)
1.4 Dephasing
16(2)
1.5 Electron-Phonon Interactions
18(5)
1.6 Spin Transport
23(5)
1.7 Building of Metal-Molecule-Metal Junctions
28(5)
1.8 Characterization of Molecular Junctions
33(6)
2 Transport Theory 39(40)
2.1 Retarded and Advanced Green's Functions for Electrons Traveling Through a MMM Junction
39(8)
2.2 The Green's Function for the Atomic Wire; an Analytical Example
47(5)
2.3 Electron Transmission and Landauer Expression for the Current Through a MMM Junction
52(4)
2.4 Electron Transport Through a Junction as a Multichannel Scattering Problem
56(8)
2.5 Nonequilibrium Green's Functions Formalism
64(9)
2.6 Rate Equations
73(6)
3 Ballistic Transport 79(54)
3.1 Charge Transfer and Electrostatic Potential Distribution in Unbiased Junctions
79(5)
3.2 Electric Charge and Potential Distribution Over a Biased MMM Junction: Current Rectification
84(6)
3.3 Fano Resonances
90(3)
3.4 Simmons Model for Electron Transport Through Molecular Insulators
93(6)
3.5 Conformational Gating of Molecular Bridges
99(3)
3.6 Effect of the Electronic Structure of the Leads on the Electron Transport Through a Junction: Negative Differential Resistance
102(3)
3.7 Coulomb Blockade and Charge Oscillations: NEGF Approach
105(5)
3.8 Coulomb Blockade: Multielectron Master Equations Approach
110(5)
3.9 Transport Through Magnetic Molecules
115(4)
3.10 Kondo Effect
119(7)
3.11 Kondo Effect in Nonequilibrium Quantum Dots."
126(7)
4 Inelastic Transport 133(50)
4.1 Vibration-Induced Features in the Electron Conductance and Current Through MMM Junctions
133(6)
4.2 Vibration-Induced Features in the Inelastic Electron Tunneling Spectra (IETS)
139(9)
4.3 The Effect of Molecular Vibrations on the Coulomb Blockade and Kondo Anomaly
148(5)
4.4 Dissipative Transport: Direct Coupling of the Molecular Bridge to the Phonon Bath
153(5)
4.5 Dissipative Transport: Indirect Coupling of the Molecular Bridge to Thermal Phonons
158(5)
4.6 Current Fluctuations
163(5)
4.7 Heat Transfer, Thermal Conductance, and Thermopower
168(7)
4.8 Polaron Effects: Hysteresis, Switching and Negative Differential Resistance
175(3)
4.9 Molecular Junction Conductance and Long Range Electron Transfer Reactions
178(5)
5 Electronic Structure Calculations in Molecules 183(48)
5.1 Kohn-Sham Equations
183(9)
5.2 Approximations for the Exchange-Correlation Energy Term
192(4)
5.3 Long-Range Interactions in the DFT
196(4)
5.4 Excitation Energies
200(4)
5.5 Time-Dependent DFT
204(3)
5.6 Dielectric Response of Fullerenes
207(5)
5.7 Density-Functional-Based Investigations of Molecular Magnets
212(5)
5.8 Photoexcitation of the Light-Harvesting Carotenoid-Porphyrin-C60 Molecular Triad
217(4)
5.9 Specifics of the Electron Structure Calculations for MMM Junctions
221(10)
6 Nanoelectronic Applications of Molecular Junctions 231(42)
6.1 Field-Effect Transistors
231(8)
6.2 Single-Molecule Diodes
239(3)
6.3 Quantum Dots and Carbon Nanotubes as Switches and Memory Elements
242(6)
6.4 Molecular Switches and Memories
248(7)
6.5 Chemoselective Sensors
255(7)
6.6 Thermoelectric Devices
262(6)
6.7 Molecules on Silicon Surfaces
268(5)
7 Conclusion 273(4)
A MATLAB Codes Used to Generate Text Figures 277(30)
References 307(28)
Index 335