Atjaunināt sīkdatņu piekrišanu

Traveling Salesman Problem: Optimization with the Attractor-Based Search System 2024 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 141 pages, height x width: 240x168 mm, 8 Illustrations, color; 58 Illustrations, black and white; XIV, 141 p. 66 illus., 8 illus. in color., 1 Paperback / softback
  • Sērija : Synthesis Lectures on Operations Research and Applications
  • Izdošanas datums: 27-Jul-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031357213
  • ISBN-13: 9783031357213
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 141 pages, height x width: 240x168 mm, 8 Illustrations, color; 58 Illustrations, black and white; XIV, 141 p. 66 illus., 8 illus. in color., 1 Paperback / softback
  • Sērija : Synthesis Lectures on Operations Research and Applications
  • Izdošanas datums: 27-Jul-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031357213
  • ISBN-13: 9783031357213
Citas grāmatas par šo tēmu:

This book presents a new search paradigm for solving the Traveling Salesman Problem (TSP). The intrinsic difficulty of the TSP is associated with the combinatorial explosion of potential solutions in the solution space. The author introduces the idea of using the attractor concept in dynamical systems theory to reduce the search space for exhaustive search for the TSP. Numerous examples are used to describe how to use this new search algorithm to solve the TSP and its variants including: multi-objective TSP, dynamic TSP, and probabilistic TSP. This book is intended for readers in the field of optimization research and application.

Introduction.- The Traveling Salesman Problem (TSP).- The Nature of Heuristic Local Search.- he Attractor-Based Search System.- Solving Multi-objective TSP.- Solving Dynamic TSP.- Solving Probabilistic TSP.- Conclusion.

Weiqi Li, PhD, is an Associate Professor at the University of Michigan Flint and an affiliated faculty in the Michigan Institute for Data Science at the University of Michigan. His research interests include combinatorial optimization, heuristics, supply chain management, and artificial intelligence. Specifically, Dr. Lis research focuses on new search methods to solve the traveling salesman problem (TSP).