Atjaunināt sīkdatņu piekrišanu

E-grāmata: Treatise on Process Metallurgy, Volume 2: Process Phenomena

Editor-in-chief (Professor Emeritus, Royal Institute of Technology, Stockholm, Sweden)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 22-Nov-2013
  • Izdevniecība: Elsevier / The Lancet
  • Valoda: eng
  • ISBN-13: 9780080969855
  • Formāts - EPUB+DRM
  • Cena: 164,18 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 22-Nov-2013
  • Izdevniecība: Elsevier / The Lancet
  • Valoda: eng
  • ISBN-13: 9780080969855

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Process metallurgy provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products.

Coverage is divided into three volumes, entitled Process Fundamentals, encompassing process fundamentals, extractive and refining processes, and metallurgical process phenomena; Processing Phenomena, encompassing ferrous processing; non-ferrous processing; and refractory, reactive and aqueous processing of metals; and Industrial Processes, encompassing process modeling and computational tools, energy optimization, environmental aspects and industrial design.

The work distils 400+ years combined academic experience from the principal editor and multidisciplinary 14-member editorial advisory board, providing the 2,608-page work with a seal of quality.

The volumes will function as the process counterpart to Robert Cahn and Peter Haasens famous reference family, Physical Metallurgy (1996)--which excluded process metallurgy from consideration and which is currently undergoing a major revision under the editorship of David Laughlin and Kazuhiro Hono (publishing 2014). Nevertheless, process and extractive metallurgy are fields within their own right, and this work will be of interest to libraries supporting courses in the process area.

Papildus informācija

A complete guide for the graduate, researcher or praticing metallurgist working with any aspect of metallurgy
Preface xvii
Contributors to Volume 2 xxv
Acknowledgement xxvii
1 Interfacial Phenomena in High Temperature Metallurgy
1(140)
Toshihiro Tanaka
Piotr R. Scheller
1.1 Surfaces and Interfaces
2(9)
Joonho Lee
Toshihiro Tanaka
1.1.1 Definition of Surfaces and Interfaces
2(3)
1.1.2 Gibbs Adsorption Isotherm
5(2)
1.1.3 Langmuir's Isotherm
7(3)
References
10(1)
1.2 Surface Tension and Contact Angle
11(8)
Joonho Lee
1.2.1 Surface Tension
11(3)
1.2.2 Contact Angle
14(2)
1.2.3 Wetting
16(1)
References
17(2)
1.3 Experiments
19(16)
Toshihiro Tanaka
Joonho Lee
1.3.1 Sessile Drop
19(4)
1.3.2 Maximum Bubble Pressure
23(2)
1.3.3 Pendent Drop
25(1)
1.3.4 Drop Weight
26(1)
1.3.5 Detachment Method
27(2)
1.3.6 Liquid Surface Contour Method
29(2)
1.3.7 Capillary Rise Method
31(1)
1.3.8 Levitating Drop
31(2)
Appendix A Software for Evaluation of Surface Tension from Sessile Drop
33(1)
References
34(1)
1.4 Surface Tension Models
35(26)
Toshihiro Tanaka
1.4.1 Modeling of Surface Tension of Liquid Pure Metals and Molten Salts
35(2)
1.4.2 Modeling of Surface Tension of Liquid Alloys
37(2)
1.4.3 Modeling of Surface Tension of Molten Ionic Materials Including Molten Slag
39(11)
1.4.4 Evaluation of Interfacial Tension Between Liquid Steel and Molten Slag
50(3)
1.4.5 Application of Constrained Gibbs Energy Minimization Approach to Evaluate Surface Tension of Liquid Alloys
53(5)
References
58(3)
1.5 Interfacial Free Energy and Wettability
61(18)
Toshihiro Tanaka
Joonho Lee
Piotr R. Scheller
1.5.1 Wettability
61(2)
1.5.2 Interfacial Free Energy Between Solid and Liquid Phases in Metals and Alloys
63(2)
1.5.3 Interfacial Tension Between Liquid Steel and Molten Slag
65(12)
References
77(2)
1.6 Some Aspects of Electrochemistry of Interfaces
79(16)
Piotr R. Scheller
1.6.1 Basics of Electrochemistry of Interfaces
79(3)
1.6.2 Electrocapillary Phenomena
82(10)
References
92(3)
1.7 Interfacial Convection and Its Effect on Material Processing
95(16)
Piotr R. Scheller
Takeshi Yoshikawa
1.7.1 Some Basics of the Interfacial Convection
95(3)
1.7.2 Effect of Interfacial Flow in Liquid--Liquid Reactions
98(3)
1.7.3 Effect of Interfacial Flow in Liquid--Gas Reactions
101(1)
1.7.4 Effect of Interfacial Flow in Liquid--Solid Reactions
102(3)
1.7.5 Effect of Interfacial Flow in Solidification Processes and Crystal Growth
105(3)
References
108(3)
1.8 Stability of Interface Between Liquid Steel and Molten Slag
111(8)
Piotr R. Scheller
Joonho Lee
Toshihiro Tanaka
References
118(1)
1.9 Applications of Interfacial Phenomena in Process Metallurgy
119(22)
Piotr R. Scheller
Joonho Lee
Takeshi Yoshikwa
Toshihiro Tanaka
1.9.1 Marangoni Flow During the Welding Process
119(5)
1.9.2 Engulfing of Small Droplets of Molten Slag into Liquid Steel
124(1)
1.9.3 Erosion or Dissolution of Refractories
125(5)
1.9.4 Separation of Metallic Droplets from Slags
130(1)
1.9.5 Engulfing Nonmetallic Inclusions and Gas Bubbles into Solidified interface
130(2)
1.9.6 Gas Bubble Formation in Liquid Steel
132(3)
1.9.7 Nucleation During Solidification
135(3)
1.9.8 Slag Foaming
138(1)
References
138(3)
2 Metallurgical Process Phenomena
141(100)
Richard J. Fruehan
P. Chris Pistorius
2.1 The Importance of Metallurgical Process Phenomena
142(1)
P. Chris Pistorius
2.2 Kinetics of Gas--Liquid and Liquid--Liquid Reactions
143(36)
Richard J. Fruehan
2.2.1 Introduction
143(1)
2.2.2 Rate-Controlling Process
143(1)
2.2.3 The Difference Between Thermodynamics and Kinetics
144(1)
2.2.4 Gas-Phase Mass Transfer
145(9)
2.2.5 Free Vaporization
154(1)
2.2.6 Liquid-Phase Mass Transfer
155(4)
2.2.7 Heat Transfer Control
159(1)
2.2.8 Chemical Kinetics
160(11)
2.2.9 Mixed Control
171(5)
2.2.10 Concluding Remarks
176(1)
References
176(3)
2.3 Bubbles in Process Metallurgy
179(18)
P. Chris Pistorius
2.3.1 Introduction
179(1)
2.3.2 Bubble Formation
179(5)
2.3.3 Bubble Shapes
184(1)
2.3.4 Plume Shape
184(3)
2.3.5 Mixing Time
187(1)
2.3.6 Bubble Rupture
187(2)
2.3.7 Bubbling-Jetting Transition
189(3)
2.3.8 Modeling
192(3)
References
195(2)
2.4 Foams and Foaming
197(20)
Kimihisa Ito
2.4.1 Foaming in Metallurgical Processes
197(5)
2.4.2 Foaming Index
202(9)
2.4.3 Slag Foaming in Industrial Processes
211(4)
References
215(2)
2.5 Applications
217(24)
Richard J. Fruehan
P. Chris Pistorius
2.5.1 Rate Phenomena in Direct Ironmaking
217(4)
2.5.2 Ladle Desulfurization Kinetics
221(4)
2.5.3 Rate Phenomena in Vacuum Degassing
225(5)
2.5.4 Rate Phenomena in AOD Stainless Steel Production
230(3)
2.5.5 Inclusion Flotation in Argon-Stirred Steel
233(5)
References
238(3)
3 Some Applications of Fundamental Principles to Metallurgical Operations
241(186)
A. McLean
3.0 Some Perspectives on the Process of Innovation
241(10)
References
250(1)
3.1 Some Metallurgical Considerations Pertaining to the Development of Steel Quality
251(32)
Y.D. Yang
A. McLean
3.1.1 Introduction
251(2)
3.1.2 Generation of Steel Quality
253(12)
3.1.3 Preservation of Steel Quality
265(7)
3.1.4 Evaluation of Steel Quality
272(8)
3.1.5 Summary
280(1)
References
281(2)
3.2 Refractory Corrosion During Steelmaking Operations
283(22)
Lidong Teng
3.2.1 Introduction
283(1)
3.2.2 Theoretical Considerations
284(6)
3.2.3 Corrosion Testing of Refractories
290(2)
3.2.4 Corrosion of Oxide--Carbon Refractories
292(11)
3.2.5 Summary
303(1)
References
303(2)
3.3 Application of Slag Engineering Fundamentals to Continuous Steelmaking
305(54)
Mansoor Barati
3.3.1 Introduction
305(1)
3.3.2 Continuous Steelmaking: An Overview
306(4)
3.3.3 Continuous Steelmaking Based on the Use of DRI
310(6)
3.3.4 Fundamental Considerations
316(17)
3.3.5 Slag Design Steps
333(20)
3.3.6 Process Analysis
353(2)
References
355(4)
3.4 Kinetics of Assimilation of Additions in Liquid Metals
359(68)
Stavros A. Argyropoulos
Zhi Li
3.4.1 Introduction
361(15)
3.4.2 Fundamentals of Assimilation
376(1)
3.4.3 Routes of Assimilation
377(14)
3.4.4 Exothermic Phenomena During Assimilation
391(23)
3.4.5 Recovery
414(9)
3.4.6 Conclusions
423(1)
References
423(4)
4 Metallurgical Process technology
427(160)
Roderick I.L. Guthrie
Mihaiela Isac
4.1 Process Kinetics, Fluid Flow, and Heat and Mass Transfer, in Process Metallurgy
428(17)
Roderick I.L. Guthrie
4.1.1 Theory of Fluid Flows
430(1)
4.1.2 The Continuity and Momentum Equations
431(4)
4.1.3 Newtonian Liquids
435(2)
4.1.4 Electromagnetically Driven Flows
437(1)
4.1.5 Physical Modeling
438(2)
4.1.6 Physical and Computational Models
440(1)
4.1.7 Computational Fluid Dynamics
440(3)
References
443(2)
4.2 Turbulence Modeling and Implementation
445(8)
Kinnor Chattopadhyay
Roderick I.L. Guthrie
4.2.1 Introduction
446(1)
4.2.2 Turbulence Models
446(4)
4.2.3 Conclusions
450(1)
References
451(2)
4.3 Computational Fluid Mechanics
453(44)
Kinnor Chattopadhyay
Roderick I.L. Guthrie
4.3.1 Introduction
454(2)
4.3.2 Applications of CFD in Process Metallurgy
456(36)
4.3.3 Conclusions
492(1)
References
492(5)
4.4 Solidification
497(18)
Mihaiela Isac
Roderick I.L. Guthrie
4.4.1 Application of Textured Copper Substrates for Enhancing Heat Fluxes
507(3)
4.4.2 Solidification in Conventional Fixed-Mold Machines
510(4)
References
514(1)
4.5 Computational and Physical Modeling of Solidification in CCC and TSC
515(12)
Mihaiela Isac
Roderick I.L. Guthrie
4.5.1 Proposed New Mechanism for the Formation of OMs
525(1)
4.5.2 Conclusions
526(1)
References
526(1)
4.6 Single Phase, Two Phase, and Multiphase Flows, and Methods to Model These Flows
527(28)
Kinnor Chattopadhyay
Roderick I.L. Guthrie
4.6.1 Introduction
527(1)
4.6.2 Multiphase Flow Regimes
528(8)
4.6.3 Example: Modeling of Inert Gas Shrouding in a Tundish (Three-Phase Flow Involving Gas Bubbles, Liquid Steel, and Slag)
536(16)
References
552(3)
4.7 The Design of a New Casting Process: From Fundamentals to Practice
555(30)
Mihaiela Isac
Roderick I.L. Guthrie
4.7.1 Continuous Casting Machines for the Steel Industry
555(10)
4.7.2 Fluid Flows, Solidification, and Heat Transfer in Moving Mold Machines
565(5)
4.7.3 Theoretical Heat Fluxes, Based on Perfect and Imperfect, Thermal Contact
570(1)
4.7.4 Solidification and Strip Microstructures in NNSC
571(5)
4.7.5 Horizontal Single-Belt Casting Processes
576(1)
4.7.6 Fluid Flows: Design of Metal Delivery Systems
577(4)
4.7.7 The Potential of the HSBC Caster: From Fundamentals to Practice
581(1)
4.7.8 Conclusions
582(1)
References
582(3)
4.8 Conclusion
585(2)
Roderick I.L. Guthrie
5 Computational Thermodynamics, Models, Software and Applications
587(266)
Jean Lehmann
Klaus Hack
5.1 Thermodynamics
588(55)
Jean Lehmann
In-Ho Jung
5.1.1 Calphad Method
588(1)
5.1.2 Dilute Metallic Solution
589(5)
5.1.3 Model for Oxide Solid Solutions
594(3)
5.1.4 The Reciprocal Ionic Liquid Model
597(1)
5.1.5 Quasichemical Models
598(2)
5.1.6 The Cell Model
600(9)
5.1.7 The Central Atoms Model and Generalized Central Atom Model
609(14)
5.1.8 The Modified Quasichemical Model
623(3)
5.1.9 Modified Quasichemical Model for Matte
626(4)
5.1.10 Thermodynamic Packages and Databases
630(8)
References
638(5)
5.2 Slag Viscosity Model
643(32)
In-Ho Jung
Evgueni Jak
Jean Lehmann
5.2.1 FactSage Structural Viscosity Model for Multicomponent Slag
643(10)
5.2.2 Viscosity of Slags
653(12)
5.2.3 Appendices
665(7)
References
672(3)
5.3 Applications
675(124)
In-Ho Jung
Jean Lehmann
Evgueni Jak
5.3.1 Applications to Steelmaking Processes
675(65)
5.3.2 Application of Advanced Modeling in Nonferrous Metallurgy
740(55)
References
795(4)
5.4 Process Modeling
799(54)
Klaus Hack
Marie-Aline Van Ende
5.4.1 Production of Metallurgical Grade Silicon in an Electric Arc Furnace
800(9)
5.4.2 Modeling TiO2 Production by Explicit Use of Reaction Kinetics
809(8)
5.4.3 Non-equilibrium Modeling for the LD-Converter
817(10)
5.4.4 Simulation of the RH--OB and BOF Processes Using the Effective Equilibrium Reaction Zone Model
827(9)
5.4.5 Rotary Cement Kiln Model
836(3)
5.4.6 Kinetic Simulation of Ladle Refining and Smelting Using Software
839(11)
References
850(3)
Index 853
Seshadri Seetharaman is Professor Emeritus at the Royal Institute of Technology in Stockholm. Professor Seetharaman has more than 320 publications in peer-reviewed journals, 130 conference presentations and 10 patents. He is the editor for the books, "Fundamentals of Metallurgy" and "Treatise on Process Metallurgy". He received the Presidents award for teaching merits in 1994. He was nominated as the best teacher in Materials Science eight times and was chosen as the best teacher of the Royal Inst. of Technol. In 2004. He has been visiting professor at Kyushu Inst. Technol., Kyoto university, Japan and TU-Bergakademie, Freiberg, Germany. He was awarded the Brimacomb prize for the year 2010 Hon. Doctor at Aalto University, Finland in 2011 and Hon. Professor at the Ukrainian Metallurgical Academy, 2011. Prof. Seetharaman is an Hon. Member of the Iron and Steel Institute of Japan, 2011, He has been honoured as the Distinguished Alumni of the Indian Institute of Science, Bangalore, India in the year 2013. He is currently a visiting professor at TATA Steel, Jamshedpur, India