Atjaunināt sīkdatņu piekrišanu

E-grāmata: Tribology of Natural Fiber Polymer Composites

(Lecturer, Department of Physics, Zakir Hussain College, University of Delhi, India),
  • Formāts - PDF+DRM
  • Cena: 243,26 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Tribology of Natural Fiber Polymer Composites, Second Edition, covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and tribological properties and performance. Environmental concerns are driving demand for biodegradable materials such as plant-based, natural fiber-reinforced polymer composites. These composites are fast replacing conventional materials in many industrial applications, especially in automobiles, where tribology (friction, lubrication and wear) is an important aspect.

  • Provides enhanced coverage on industrially relevant fiber types, such as flax, hemp, kenaf, rice, grain husk and pyrolyzed fibers
  • Includes an emphasis on modeling and the simulation of the wear resistance of fibers
  • Discusses the effect of aging in various environments and different results in wear and friction performance
Preface xi
List of abbreviations
xiii
1 Natural fibers and their composites
1(60)
1.1 Introduction
1(2)
1.2 Sources of natural fibers
3(11)
1.2.1 Types of plant fibers
5(6)
1.2.2 Extraction of fibers
11(3)
1.3 Surface modification of natural fibers
14(1)
1.4 Chemical treatments
15(7)
1.4.1 Silane treatment
15(2)
1.4.2 Acetylation
17(1)
1.4.3 Isocyanate treatment
17(1)
1.4.4 Stearic acid treatment
18(1)
1.4.5 Graft copolymerization
18(2)
1.4.6 Duralin treatment
20(1)
1.4.7 Permanganate treatment
20(1)
1.4.8 Peroxide treatment
21(1)
1.4.9 Benzoylation treatment
21(1)
1.4.10 Maleated coupling agent
22(1)
1.5 Physical treatment
22(1)
1.5.1 Mercerization
22(1)
1.5.2 Corona, cold plasma treatment
23(1)
1.6 Sisal and jute fiber
23(10)
1.6.1 Thermogravimetric analysis of untreated and treated sisal fibers
23(2)
1.6.2 Crystallinity of sisal fibers
25(1)
1.6.3 Thermal properties of sisal-based hybrid fabric
25(2)
1.6.4 Spectral characterization of untreated and treatedsisal fibers
27(1)
1.6.5 Thermogravimetric analysis of jute fibers
28(1)
1.6.6 Spectral characterization of untreated and treated jute fibers
28(1)
1.6.7 Comparative data on sisal and jute fibers
28(3)
1.6.8 Crystallinity of treated fibers
31(1)
1.6.9 Spectral characterization of treated fibers
31(1)
1.6.10 Morphological characterization of treated fibers
32(1)
1.7 Wood
33(2)
1.7.1 Thermogravimetric analysis
33(1)
1.7.2 Spectral characterization
33(2)
1.8 Bamboo
35(3)
1.8.1 Thermogravimetric analysis
35(1)
1.8.2 Spectral characterization of untreated and treated bamboo
35(1)
1.8.3 Crystallinity
35(3)
1.9 Cotton
38(2)
1.9.1 Thermogravimetric analysis
38(1)
1.9.2 Spectral characterization of cotton
39(1)
1.10 Flax fiber
40(1)
1.10.1 Thermogravimetric analysis
40(1)
1.10.2 Spectral characterization of flax fibers
40(1)
1.11 Mechanical properties of natural fibers
40(3)
1.12 Natural fiber polymer composites
43(6)
1.12.1 Thermoset-based composites
45(2)
1.12.2 Thermoplastic-based composites
47(1)
1.12.3 Biodegradable polymers-based composites
48(1)
1.13 Applications of natural fiber composites
49(4)
1.13.1 Automotive applications
49(3)
1.13.2 Construction industry
52(1)
1.13.3 Rural and cottage industry
53(1)
1.14 Significance and economics of natural fiber polymer composites
53(2)
1.14.1 Economic aspects of natural fibers
54(1)
1.14.2 Cultivation of natural fiber as crops
54(1)
1.15 Sources of further information and advice
55(1)
References
56(5)
2 Introduction to tribology of polymer composites
61(26)
2.1 What is tribology?
61(1)
2.2 Origin of friction
62(4)
2.3 Definition of wear and its classification
66(2)
2.4 How friction and wear are measured
68(4)
2.4.1 Contact configurations
68(1)
2.4.2 Operating parameters
68(2)
2.4.3 Sliding wear test
70(1)
2.4.4 Abrasive wear tests
70(2)
2.5 Mechanical characterization of polymer composites
72(3)
2.5.1 Impact strength of natural/synthetic fiber-reinforced polymer composites
74(1)
2.6 Tribology characterization of polymer composites
75(4)
2.6.1 Friction coefficient
75(1)
2.6.2 Wear formula
75(1)
2.6.3 Wear mechanism
75(1)
2.6.4 Effect of operating parameters
76(1)
2.6.5 Effect of fiber reinforcement
76(1)
2.6.6 Effect of filler
77(2)
2.7 Significance of composites in tribology
79(4)
2.7.1 Polymer matrix composites
80(3)
References
83(4)
3 Sisal-reinforced polymer composites
87(24)
3.1 Sisal fiber
87(6)
3.1.1 Advantages and disadvantage of sisal fibers
87(2)
3.1.2 Chemical composition of sisal fibers
89(1)
3.1.3 Physical structure of sisal fibers
89(1)
3.1.4 Mechanical properties of sisal fibers
90(3)
3.2 Sisal---polymer composites
93(4)
3.2.1 Surface modification of sisal fibers
93(1)
3.2.2 Sisal---polyester composites
93(2)
3.2.3 Sisal---epoxy composites
95(1)
3.2.4 Sisal---phenolic composite
96(1)
3.2.5 Sisal---polyethylene composite
97(1)
3.3 Mechanical properties of sisal---polymer composites
97(2)
3.3.1 Sisal---thermoset composites
97(1)
3.3.2 Sisal---thermoplastic composites
98(1)
3.4 Tribological behavior of sisal---polymer composites
99(10)
3.4.1 Abrasive wear behavior: sisal---epoxy composite
99(3)
3.4.2 Sliding wear behavior: sisal---polyester composite
102(4)
3.4.3 Friction and wear behavior: sisal---phenolic composite
106(3)
References
109(2)
4 Jute-reinforced polymer composites
111(20)
4.1 Jute fiber
111(2)
4.1.1 Advantages and disadvantages of jute fibers
112(1)
4.1.2 Chemical composition of jute fibers
112(1)
4.1.3 Physical structure of jute fibers
113(1)
4.1.4 Mechanical properties of jute fibers
113(1)
4.2 Jute---polymer composites
113(10)
4.2.1 Surface modification of jute fibers
118(5)
4.3 Tribological behavior of jute composites
123(6)
4.3.1 Jute---polyester composites
123(2)
4.3.2 Jute---polypropylene composites: effect of coupling agent
125(4)
4.3.3 Jute---epoxy composite: effect of heat treatment
129(1)
References
129(2)
5 Cotton-reinforced polymer composites
131(32)
5.1 Cotton fiber
131(5)
5.1.1 Advantages and disadvantage of cotton fiber
131(1)
5.1.2 Chemical composition of cotton fiber
131(1)
5.1.3 Physical structure of cotton fiber
132(2)
5.1.4 Mechanical properties of cotton fiber
134(2)
5.2 Cotton---polymer composites
136(10)
5.2.1 Cotton---polyester composites
137(9)
5.3 Tribological behavior of cotton---polyester composites
146(14)
5.3.1 Graphite-filled polyester composites
148(6)
5.3.2 Ultra-high molecular weight polyethylene-filled polyester composite
154(5)
5.3.3 Lubrication behavior of cotton
159(1)
References
160(3)
6 Bamboo-reinforced polymer composites
163(14)
6.1 Bamboo
163(3)
6.1.1 Advantages and disadvantages of bamboo
163(1)
6.1.2 Physical properties of bamboo
164(1)
6.1.3 Chemical composition of bamboo
164(1)
6.1.4 Mechanical properties of bamboo
165(1)
6.2 Bamboo---polymer composites
166(3)
6.2.1 Bamboo---thermoset composites
166(2)
6.2.2 Bamboo---thermoplastic composites
168(1)
6.3 Tribological behavior of bamboo and bamboo---polymer composites
169(7)
6.3.1 Abrasive wear behavior
169(6)
6.3.2 Sliding wear behavior
175(1)
References
176(1)
7 Wood-reinforced polymer composites
177(16)
7.1 Wood
177(2)
7.1.1 Advantages and disadvantages of wood
177(1)
7.1.2 Chemical composition of wood
178(1)
7.1.3 Physical structure of wood
178(1)
7.2 Wood---plastic composites
179(8)
7.2.1 Wood flour---polyethylene composites
180(6)
7.2.2 Wood flour---polypropylene composites
186(1)
7.2.3 Mechanical properties of wood flour---polypropylene composites
187(1)
7.2.4 Other polymers
187(1)
7.3 Tribological behavior of wood flour---polymer composites
187(3)
7.3.1 Abrasive wear behavior
187(3)
7.3.2 Wear behavior of wood flour---epoxy composites
190(1)
References
190(1)
Sources of further information and advice
191(2)
8 Industrially significant natural fiber-reinforced polymer composites
193(14)
8.1 Introduction
193(8)
8.1.1 Hemp fiber-reinforced polymer composites
194(1)
8.1.2 Kenaf fiber-reinforced polymer composites
195(3)
8.1.3 Rice husk filled polymer composites
198(1)
8.1.4 Date-and oil palm-reinforced polymer composite
199(2)
8.2 Some critical aspects of machining of natural fiber polymer composites
201(2)
References
203(4)
9 Green tribology and tribological characterization of biocomposites
207(6)
9.1 Introduction
207(1)
9.1.1 Natural fiber composites
207(1)
9.2 Tribological characteristics of green biocomposites
208(3)
9.2.1 Nanocellulose fiber-based polymer composites
209(2)
References
211(2)
10 Molecular dynamics simulation and tribological behavior of polymer composites
213(6)
10.1 Basic theory of molecular dynamic simulation
213(1)
10.2 Application of molecular dynamics simulation to understand wear and friction behavior of polymer composites
214(3)
10.2.1 Potential used in molecular dynamics simulation of polymer composites
214(1)
10.2.2 Simulation model and protocol
215(1)
10.2.3 Tribological study
216(1)
References
217(2)
Appendix: Chemical composition of natural plant fibers 219(2)
Index 221
Navin Chand is the former Acting Director of CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India. He obtained his PhD degree in Textile Technology from the Indian Institute of Technology, Delhi, in 1980. After obtaining his degree he joined the National Chemical laboratory (NCL), Pune as Scientist. Later he joined the Regional Research Laboratory (RRL), Bhopal (now AMPRI Bhopal) in 1982. He has published more than 200 papers in journals of national and international repute and conferences. He has been honored with several awards and citations in recognition to his contributions in the field of basic and applied research. These include the MRSI Medal, BHEL citation, and Rotary Club of Bhopal Award. He is a Fellow of the Indian Plastics Institute, ex-fellow of Institute of Materials; and a member of the Materials Research Society of India (past chairman MRSI Bhopal chapter). His research interest includes polymer and fiber science and technology, polymer nanocomposites, nanofibers, and waste utilization. Dr Mohammed Fahim is Adhoc Lecturer at the Department of Physics, Zakir Hussain College, University of Delhi, India.