Atjaunināt sīkdatņu piekrišanu

E-grāmata: Trigonometry: A Complete Introduction: The Easy Way to Learn Trig

4.13/5 (42 ratings by Goodreads)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 07-Jun-2018
  • Izdevniecība: Teach Yourself
  • Valoda: eng
  • ISBN-13: 9781473678507
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 3,84 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 07-Jun-2018
  • Izdevniecība: Teach Yourself
  • Valoda: eng
  • ISBN-13: 9781473678507
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Trigonometry: A Complete Introduction is the most comprehensive yet easy-to-use introduction to Trigonometry. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge.

The book covers all areas of trigonometry including the theory and equations of tangent, sine and cosine, using trigonometry in three dimensions and for angles of any magnitude, and applications of trigonometry including radians, ratio, compound angles and circles related to triangles. Everything you will need is here in this one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.
Welcome to Trigonometry: A complete introduction ix
Introduction xi
1 The tangent
1(14)
1.1 Introduction
1.2 The idea of the tangent ratio
1.3 A definition of tangent
1.4 Values of the tangent
1.5 Notation for angles and sides
1.6 Using tangents
1.7 Opposite and adjacent sides
2 Sine and cosine
15(18)
2.1 Introduction
2.2 Definition of sine and cosine
2.3 Using the sine and cosine
2.4 Trigonometric ratios of 45° 30° and 60°
2.5 Using the calculator accurately
2.6 Slope and gradient
2.7 Projections
2.8 Multistage problems
3 In three dimensions
33(10)
3.1 Introduction
3.2 Pyramid problems
3.3 Box problems
3.4 Wedge problems
4 Angles of any magnitude
43(10)
4.1 Introduction
4.2 Sine and cosine for any angle
4.3 Graphs of sine and cosine functions
4.4 The tangent of any angle
4.5 Graph of the tangent function
4.6 Sine, cosine and tangent
5 Solving simple equations
53(10)
5.1 Introduction
5.2 Solving equations involving sines
5.3 Solving equations involving cosines
5.4 Solving equations involving tangents
6 The sine and cosine formulae
63(24)
6.1 Notation
6.2 Area of a triangle
6.3 The sine formula for a triangle
6.4 The ambiguous case
6.5 The cosine formula for a triangle
6.6 Introduction to surveying
6.7 Finding the height of a distant object
6.8 Distance of an inaccessible object
6.9 Distance between two inaccessible but visible objects
6.10 Triangulation
7 Radians
87(8)
7.1 Introduction
7.2 Radians
7.3 Length of a circular arc
7.4 Converting from radians to degrees
7.5 Area of a circular sector
8 Relations between the ratios
95(8)
8 7 Introduction
8.2 Secant, cosecant and cotangent
9 Ratios and compound angles
103(16)
9.1 Compound angles
9.2 Formulae for sin(A + B) and sin(A - B)
9.3 Formulae for cos(A + B) and cos(A - B)
9.4 Formulae for tan(A + B) and tan(A - B)
9.5 Worked examples
9.6 Multiple angle formulae
9.7 Identities
9.8 More trigonometric equations
10 The forms a sin x and b cos x
119(10)
10.1 Introduction
10.2 The form y = asin x + bcos x
10.3 Using the alternative form
11 The factor formulae
129(10)
11.1 The first set of factor formulae
11.2 The second set of factor formulae
12 Circles related to triangles
139(14)
12.1 The circumcircle
12.2 The incircle
12.3 The ecircles
12.4 Heron's formula: the area of a triangle
13 General solution of equations
153(8)
13.1 The equation sin θ = sin α
13.2 The equation cos θ = cos α
13.3 The equation tan θ = tan α
Glossary 161(4)
Summary of trigonometric formulae 165(4)
Answers 169(16)
Index 185
Hugh Neill is a maths teacher who has also been an inspector and chief examiner. His books have helped over 100,000 people improve their mathematics.